MOLECULAR ANALYSIS OF RED OAK (QUERCUS RUBRA) POPULATIONS FROM A METAL **CONTAMINATED REGION IN NORTHERN ONTARIO, CANADA**

Maegan Makela¹ and Kabwe Nkongolo²

Department of Biology, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada

Introduction

Metal toxicity is a major cause of abiotic stress

in plants. Several taxa have developed different

coping mechanisms to soil metal contamination

to maintain physiological concentrations of

essential plant nutrients and to avoid toxicity.

Materials and Methods

DNA extraction

Extraction of genomic DNA from red oak leaves was performed according to the CTAB protocol (Nkongolo, 1999) and quantified by fluorometry.

PCR

The main objective of the present study is to DNA was amplified using six selected RAPD characterize red oak (Quercus rubra) primers (table 1). **Statistical Analysis** Genetic variability parameters were determined using the Popgene software: percentage of polymorphic loci, Nei's gene diversity (h), Shannon's information index (I), observed (Na) and effective (Ne) Number of alleles.

Table 2: Candidate genes for copper (Cu) and nickel (Ni) resistance.

Metal	Gene	Species	Reference	
	Copper-transporting ATPase (RAN1)	Arabidopsis thaliana	Kobayashi <i>et a</i> l., 2008	
	Multi-Drug resistance associated protein (MRP4)	Betula pendula	Keinänen et al., 2007	
	Copper transporter protein (COPT1)	Arabidopsis thaliana	Sancernón et al., 2004	
	Metallothionein (MT2b)	Arabidopsis thaliana	Guo <i>et al</i> ., 2008	
Conner	Serine acetyltransferase (SAT)	Thlaspi goesingense	Freeman <i>et al</i> ., 2004	
oopper	Glutathione reductase (GR)	Thlaspi goesngense	Freeman <i>et al</i> ., 2004	
	Nicotianamine synthase (NAS3)	Noccaea, Caerulescens, Thlaspi caerulescences	Visioli <i>et al</i> ., 2014 Mari <i>et al</i> ., 2006	
	Metal transporter Nramp3	Noccaea	Visioli <i>et al</i> ., 2014	
Nickel	Metal transporter Nramp4	coaerulescens		
	1-aminocyclopropane-1-carboxylic acid deaminase (ACC)	Brassica napus	Stearns <i>et al.</i> , 2005	
	High affinity nickel transporter family protein (AT2G16800)	Arabidopsis thaliana		

Results

Table 4: Genetic Diversity parameters of red oak (Quercus rubra) populations based on RAPD data.

Population	P (%)	Na	Ne	Н	Ι
Daisy Lake	71.81	1.7181	1.3024	0.1859	0.2923
Wahnapitae Hydro Dam	67.79	1.6779	1.2889	0.1787	0.2808
Laurentian	71.14	1.7114	1.3088	0.1898	0.2970

populations from a metal-contaminated region in Northern Ontario by analyzing genetic variation and gene regulation between and within populations located both in metal contaminated soils and reference sites.

Table 1: The nucleotide sequence of RAPD primers used to amplify DNA from red oak (Quercus rubra) population samples.

RAPD Primers	5') 3'	GC content	Number of bands	Size (bp)
UBC 186	GTGCGTCGCT	70%	27	205 - 1950
UBC 402	CCCGCCGTTG	80%	21	330-2000
OPA 16	AGCCAGCGAA	60%	23	230-2000
OPA 19	CAAACGTCGG	60%	25	230-2000
OPB 05	AGGGGTCTTG	60%	28	140-1900

Results

All genetic markers were scored based on presence or absence of amplification products and observed as bands on the agarose gel. The data was used to calculate the genetic distances from the 10 populations as illustrated in table 3.

Table 3: Distance matrix generated from RAPD data using Jaccard's similarity coefficient analysis. Values based on a 0 (identical) - 1 (different) scale.

Quanall		Ht	Hs	Gst	Nm
Mean		1.69	1.30	0.19	0.29
Airport	62.42	1.6242	1.2652	0.1616	0.2535
Onaping Falls	71.14	1.7114	1.3034	0.1869	0.2929
St.Charles	68.46	1.6846	1.3093	0.1875	0.2912
Capreol	61.07	1.6107	1.2817	0.1701	0.2636
Falconbridge	71.14	1.7114	1.3635	0.2202	0.3373
Kingsway	69.80	1.6980	1.3215	0.1963	0.3046
Kukagami	70.47	1.7047	1.2817	0.1754	0.2781

Conclusion

• There were significant differences in soil metal content between metal contaminated and uncontaminated sites for the main elements (nickel, copper, zinc...).

Materials and Methods

Part 1: Assessing genetic variation

Sampling

Red oak leaves were sampled from seven metal contaminated sites and three reference sites from the Greater Sudbury Region. Secondary leaves were collected and washed. The collected samples were flash frozen and stored at -80°C for the DNA extraction.

275-1900 OPT 17 CCAACGTCGT 60%

Part 2: Determining Gene Expression

Sampling

Red oak roots and leaves were sampled from three metal contaminated sites and three reference sites from the Greater Sudbury Region. Secondary roots were collected and washed. The collected samples were flash frozen and stored at -80°C for the RNA extraction.

RNA extraction

Extraction of total cellular RNA from red oak leaves and roots will be performed according to the Chang et al., 1993 protocol with modifications and quantified via fluorometry and treated with DNAse.

qRT-PCR

Eleven genes involved in nickel and copper resistance in other species were selected for this

	Daisy Lake	Dam	Laurentia n	Kukagami	Kingsway	Falconbri dge	Capreol	St.Charles	Onaping Falls	Airport
Daisy Lake		0.20	0.26	0.27	0.27	0.25	0.28	0.23	0.31	0.27
Dam			0.24	0.26	0.32	0.25	0.27	0.25	0.30	0.31
Laurentia n				0.29	0.35	0.27	0.34	0.29	0.35	0.30
Kukagami					0.31	0.28	0.32	0.26	0.29	0.35
Kingsway						0.24	0.35	0.26	0.34	0.33
Falconbri dge							0.27	0.18	0.31	0.34
Capreol								0.26	0.34	0.35
St.Charles									0.27	0.30
Onaping Falls										0.31
Airport										

• No significant difference in polymorphism was observed between metal contaminated and reference populations of red oak.

- Genetic variability within populations was high.
- Genetic distance among populations was low and the gene flow was high.

Future Directions

Transcriptome analysis of red oak samples from metal - contaminated and control areas

Acknowledgements

We thank the Natural Science and Engineering Council of Canada (NSERC), VALE and Glencore Sudbury for financial support.

References

study (Table 2), and will be used to design primers. The cDNA will be generated using the High-Capacity cDNA Reverse Transcription Kit from Life Technologies. To confirm that the candidate genes are expressed in red oak, regular RT-PCR will be performed on selected samples.

Nei's gene diversity (h) and Shannon's information index were 1.69, 1.30, 0.19 and 0.29, respectively. The level of population differentiation (G_{ST}) was low (0.17) and the estimated gene flow (N_m) was high (2.39). The total gene diversity (H_T) and the mean gene diversity between populations (H_s) were 0.22 and 0.19, respectively (table 4).

The level of polymorphic loci ranged from 61 %

to 72 %. The mean values of observed number of

alleles (Na), Expected number of alleles (Ne),

1. Chang, S., Puryear, J., and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, **11**:113-116. 2. Nkongolo, K.K. 1999. RAPD variations among pure and hybrid populations of Picea mariana, P. rubens and P. glauca (Pinaceae) and cytogenetic stability of Picea hybrids: identification of species-specific RAPD markers. Plant systematic and evolution, **215**: 229-239.

