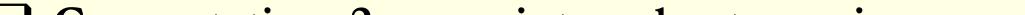
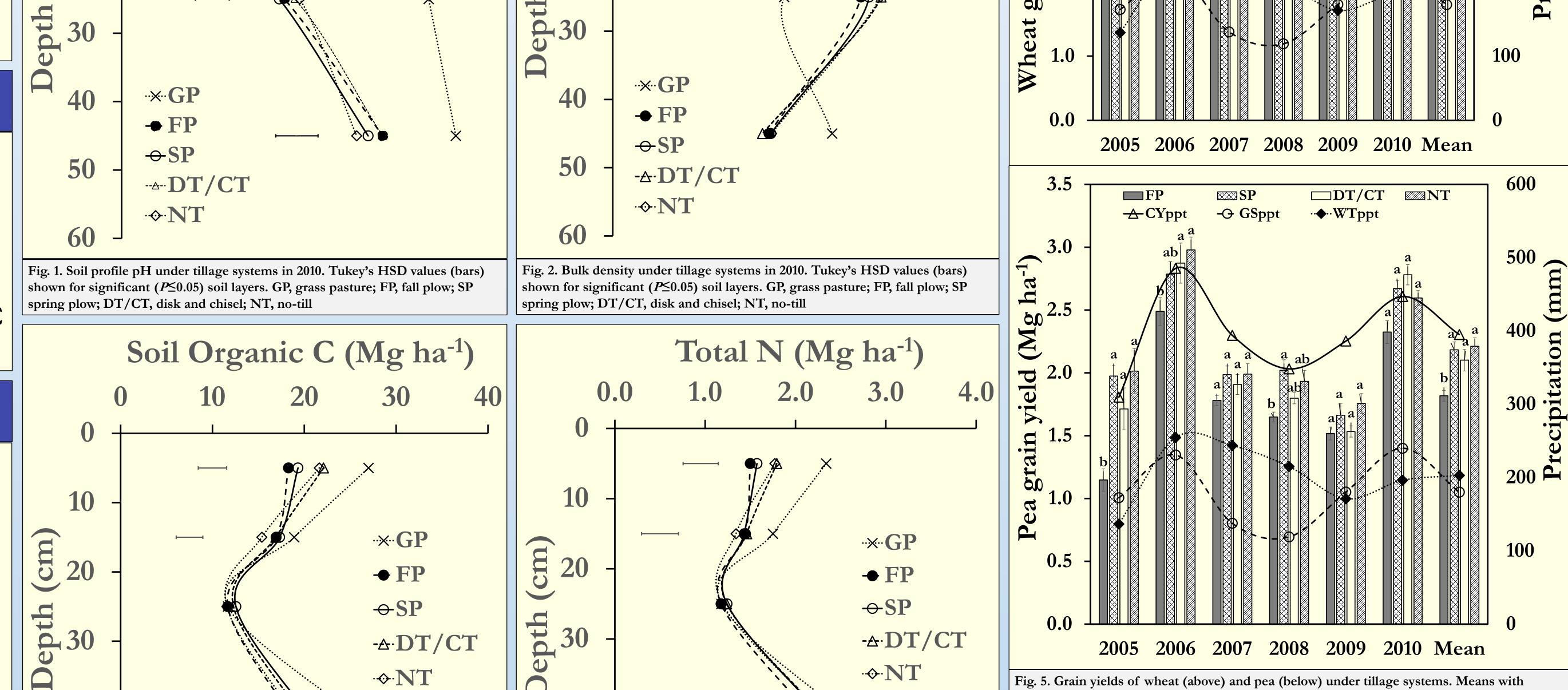
Long-Term Tillage Effects on Soil Organic Carbon, Nitrogen, and Grain Yields of Winter Wheat – Spring Pea Rotation in the Pacific Northwest Rakesh Awale, Stephen Machado, and Karl Rhinhart Oregon State University – Columbia Basin Agricultural Research Center, Adams, Oregon									
RAT	IONALE	SOIL PARA	CROP YIELDS						
 health and sustainable as, offset anthropogeni agroecosystems. Tillage influences resides soil micro-environment dynamics, and crop product Long-term studies could 	ration and N storage enhance soil agricultural production, as well c CO_2 and N_2O emissions from lue distribution and regulates t that can alter SOC and N oductivity. Id be an efficient way to assess tems play in SOC and N	Soil pH 4.5 5.0 5.5 6.0 6.5 7.0 7.5 0 1	Bulk Density (Mg m ⁻³) 1.0 1.1 1.2 1.3 1.4 1.5 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					


the role that tillage systems play in SOC and N dynamics, and agricultural productivity.


AIM

- Determine long-term (47-year) tillage influences on 1. SOC and TN within 60 cm soil profile,
 - 2. Bulk density and pH at different depth intervals,
- 3. Grain yields of wheat and pea in a two-year rotation. **Compare the soil quality parameters against that of an** undisturbed grass pasture, and report the status of SOC and TN over time.

STUDY

- **Site:** Columbia Basin Agricultural Research Center near Pendleton, OR (45°42' N, 118°35' W). The wheat-pea experiment established in 1963.
- **Soil type:** Walla Walls silt loam (coarse-silty, mixed, mesic Typic Haploxeroll), 0-1% slope.
- **Climate:** Semiarid temperate, 418 mm average annual precipitation.

- **Crop rotation:** 2 year
- Wheat phase: Semi-dy planted in fall (early C and July.
- Pea phase: Spring dry early April), harvested
- **Experimental design:** tillage sub plots (4 rep
- **Reference site:** Grass 1931, no disturbance a
- In 2010, soils analyzed Grain yields determine

op rotation: 2 year winter wheat – spring pea neat phase: Semi-dwarf soft white winter wheat nted in fall (early October), harvested between June I July. A phase: Spring dry-edible pea sown in (March to ly April), harvested in June. perimental design: Split-plot – crop whole plots and				40 - 50 - 60 - Fig. 3. Soil organic C under ti shown for significant (<i>P</i> ≤0.05	llage systems in 2010	-		-		ns in 2010. Tukey's H	SD values (bars) shown P, fall plow; SP spring	
age sub plots (4 replications).				spring plow; DT/CT, disk an	spring plow; DT/CT, disk and chisel; NT, no-till plow; DT/CT, disk and chisel; NT, no-till							
ference site: Grass pasture of native vegetation since			Table 2. Changes in soil organic C and total N in whole 60 cm profile									
1, no disturbance and external inputs. 2010, soils analyzed for pH, bulk density, SOC and N.				/۳۰ 11	Soil Organic C		Total N					
	letermined for	-	•		Tillage	1995	2010	(1995-2	95-2010)* 1995 2010 (1995			(1995-2010)‡
Table 1. Tillage treatments in the study					Mg ha ⁻¹ %		, 0	Mg ha ⁻¹		%		
-		Primary T	Tillage		Grass Pasture	-	87.4 a	-		-	8.22 a	_
ents	After Wheat Stubble	Depth (cm)	After Pea Vines	Depth (cm)	Fall Plow	65.9 a	67.6 c	2.6	ns	6.55 a	6.57 c	0.3 ^{ns}
\mathbf{W}	Moldboard Plow (fall)	20	Moldboard plow (fall)	20	Spring Plow	65.9 a	72.2 b	9.5	5*	6.58 a	6.84 bc	3.9*
Plow	Moldboard Plow (spring)	20	Moldboard plow (fall)	20	Disk/Chisel	65.5 a	73.4 b	12.	1*	6.56 a	7.10 b	8.3*
hisel	Disk (fall)	10	Chisel (fall)	20	No-till	64.3 a	69.8 bc	8.0	5*	6.37 a	6.93 bc	8.8*

different letters within each year are different at $\alpha = 0.05$. FP, fall plow; SP spring plow; DT/CT, disk and chisel; NT, no-till; CYppt, crop-year precipitation (Sept-Aug); WTppt winter precipitation (Sept-Feb); and GSppt, growing season precipitation (March-July)

SUMMARY

- **Conversion** of native grassland to wheat-pea cropping system remarkably declined soil pH, SOC, and TN.
- **Conservation tillage cropping systems** increased SOC and TN relative to fall
 - plowing, with greater storages observed near soil surface (0-10 cm).
- □ No-till would probably require more time to build-up SOC and TN.
 - **Conservation tillage systems increased pea** yield over fall plowing, but wheat yields may be constrained due to poor weed control without plowing.
 - **Effective weed control along with** reductions in tillage and N-fertilizer associated costs will likely result in greater adoption of conservation tillage systems in

Disk/Chisel	Disk (fall)	10	Chisel (fall)	20
No-till (since 1996)	No-till	-	No-till	-

Means with different letters within a column in each year are different at α = 0.05. [‡]The columns compare SOC and TN across years. * indicates that SOC and TN means in 1995 and 2010 are significantly different at $\alpha = 0.05$. ns indicate not significant. The 1995 data was obtained from Machado, 2011.

REFERENCES

Treatments

Fall Plow

Spring Plow

• Machado, S. 2011. Soil organic carbon dynamics in the Pendleton long-term experiments: Implications for biofuel production in Pacific Northwest. Agronomy Journal 103: 253-260. • Payne, W.A., P.E. Rasmussen, C. Chen, R. Goller, and R.E. Ramig. 2000. Precipitation, temperature and tillage effects upon productivity of a

winter wheat-dry pea rotation. Agronomy Journal 92: 933-937.

RESILIENCE EMERGING FROM SCARCITY AND ABUNDANCE ASA, CSSA & SSSA International Annual Meeting

Nov. 6-9, 2016, Phoenix, AZ

