

Spatio-temporal soil CO₂ concentrations and fluxes after artificial CO₂ release in Korea $< \frac{1}{100}$

Introduction

- Carbon capture and storage (CCS) is a technical process to capture CO_2 from industrial and energy-based sources, transfer and sequestrate impressed CO₂ in geological formations, oceans, or mineral carbonates (IPCC 2005).
- However, potential CO_2 leakage may exist and cause environmental problems (Lewicki et al. 2010).
- This study was conducted to analyze the spatial and temporal variation in soil CO_2 concentrations and fluxes after artificial CO_2 release in Korea.

Materials and Methods

Study site and experimental design

- A controlled artificial CO₂ release experiment site was established in Eumsung, Korea (36°57'44.2"N, 127°28'03.1"E), with perforated linear pipeline buried in the center at the depth of 2.5m.
- The site, called "Environmental Impact Evaluation Test Facility on Seepage of Geologically Stored CO₂ (EIT)", consisted of the 5 treatment zones (Fig. 1).

Fig. 1. Controlled artificial CO_2 release experiment site (EIT) in Eumsung, Korea, showing locations of soil CO_2 concentration (red circles) and flux (blue stars) measurements.

Operation and measurements

- The CO₂ injection pipe was installed at 2.5m depth, and each zone had 2 CO₂ release wells with 1m in width (Fig. 2).
- From 26 to 30 October 2015, $34kgCO_2 day^1 zone^{-1}$ were released from each of the perforated wells in Zones 2, 3, and 4.
- Soil CO₂ flux was measured at the surface at 0m, 1.5m, 2.5m, and 10m from the CO_2 releasing well in Zone 3 using an automated soil CO_2 flux system (Li-8100A), and soil CO₂ concentration was measured at 15cm, 30cm, and 60cm depths at every 0m, 2.5m, 5m, and 10m distances from the well in Zones 2, 3, and 4 using a portable gas analyzer (GA5000).

		2.5m	
			55m
Saturated zone			
Separation Wall	CO ₂ release well		CO ₂ release wel
Compaction		Compaction	
No screen (4m)	→• →• 1m	No screen (4m)	→
I 🗸			

Fig. 2. Installation of CO_2 injection pipe in EIT.

Hyun-jun Kim^{1,2}, Hyeon Min Yun², Seongjun Kim², Seung Hyun Han², and Yowhan Son^{2*} ¹BK21 Plus Eco-Leader Education Center, Korea University, Seoul 02841, Korea ²Department of Environmental Science and Ecological Engineering, Graduate School, Korea University, Seoul 02841, Korea * Corresponding author: yson@korea.ac.kr

Soil CO₂ concentration

- Soil CO₂ leakage signal was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the second day after CO_2 release (Fig. 3).
- Soil CO₂ was leaked more widely over time, and detected up to 5m away from the well at all zones through the CO_2 releasing period.
- Soil CO₂ was measured up to 89% at 60cm depth at 0m from the well, followed by 30cm depth (82.5%) and 15cm depth (55.4%) at the same distance in Zone 3.

• Spatial and temporal variations of soil CO₂

- The spatial variation in soil CO_2 concentration was clearly observed, especially when presented by soil depth and observation date (Fig. 4).
- The observed soil CO_2 concentration was highest at Zone 3.
- The temporal variation of soil CO₂ showed the similar patterns at 30cm and 60cm depths.
- rates were reduced.

Fig. 4. Spatial and temporal variations of soil CO_2 in EIT, Korea.

Results and Discussion

Fig. 3. Spatial distribution of soil CO_2 based on distance and soil depth

• At all depths, soil CO_2 has increased for the first 4 days, after that, its increase

Soil CO₂ flux

- dependence on surrounding soil and meteorological conditions (Schloemer et al. 2013).
- artificial CO_2 release stopped.

- University Press, New York.
- 60(2): 285-297.

• Soil CO₂ fluxes showed temporal and spatial variations due to its strong

KOREA UNIVERSITY

• Soil CO₂ fluxes were significantly affected by the climatic factors; negative relationship with relative humidity and atmospheric pressure and positive relationship with soil temperature and moisture (Fig. 5).

• Soil CO₂ leakage at the surface was detected at 0m distance from the well after 5 days, and soil CO_2 flux increased over 8 days until raining even though the

Fig. 5. Time series of (a) soil temperature, (b) soil moisture, (c) relative humidity, (d) atmospheric pressure, (e) CO_2 concentration, and (f) CO_2 flux.

Conclusions

• Soil CO₂ concentrations and fluxes after artificial CO₂ release were clear and varied by soil depth, distance from well, and observation time.

Even the same amount of CO_2 gas was injected, the CO_2 releasing variations were detected differently in all zones.

Acknowledgments

This subject was supported by Korea Ministry of Environment (2014001810002).

Reference

IPCC. 2005. IPCC special report on carbon dioxide capture and storage. Cambridge

Lewicki JL, Hilley GE, Dobeck L, and Spangler L. 2010. Dynamics of CO₂ fluxes and concentrations during a shallow subsurface CO₂ release. Environmental Earth Sciences

Schloemer S, Furche M, Dumke I, Poggenburg J, Bahr A, Seeger C, Vidal A, and Faber E. 2013. A review of continuous soil gas monitoring related to CCS – technical advances and lessons learned. Applied Geochemistry 30: 148-160.