Evaluation of POLY4 (polyhalite) as a fertilizer in

comparison to sulphate of potash for tobacco

Tang Li², Kiran Pavuluri¹, Robert Meakin¹

(1) Sirius Minerals PLC, Manor Garth, Scarborough YO11 3TU, UK; (2) College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, P.R.China

Treatments

Abstract

Polyhalite ($K_2SO_4.MgSO_4.2CaSO_4.2H_2O$, POLY4[®]) can potentially expand the options of low chloride potash sources for tobacco. Two trials were conducted at Yunnan Agricultural University in 2014 and 2015 evaluating POLY4 against Sulphate of Potash (SOP) at 88, 116, 175 and 263 kg K_2O ha⁻¹ for yield and quality attributes. Yield and economic returns were significantly enhanced due to potassium fertilization irrespective of sources in both 2014 and 2015. Similarly leaf potassium uptake significantly responded to potassium application in 2014. Reducing sugar concentration was significantly higher for POLY4 compared to SOP and Control in 2014. In 2014, black shank disease incidence was significantly reduced under POLY4 compared to SOP. Bacterial wilt was similarly reduced with potassium fertilization,

 Table 2 – Summary of potassium fertilizer applications

Treatment number	K ₂ O Source	Nutrients applied (kg ha ⁻¹)			
		K ₂ O	CaO	MgO	S
1	Control	0	0	0	0
2	POLY4	88	107	38	119
3	POLY4	117	142	50	159
4	POLY4	175	213	75	238
5	POLY4	263	319	113	357
6	SOP	88	-	-	32
7	SOP	117	-	-	42
8	SOP	175	-	-	63

although there was no significant difference between potassium sources. We conclude that POLY4 could be used as a source of potassium in tobacco crop nutrient management under local conditions at Yunnan China.

Introduction

- K deficiencies were observed in Yunnan province in China. Tobacco crop consumes on an average 100 kg of K₂O ha⁻¹. Cost of K fertilizer was enhanced by 292% since 2000
- Low chloride potassium nutrition is critical for the production of high yielding quality tobacco. Potassium content in tobacco influences leaf colour, texture, contents of reducing sugars and alkaloids, combustibility, hygroscopic properties, burning properties, reduces tar quantities and thus may influence reduction in harmful substances.
- POLY4[®] is an alternate potassium sources to SOP and SOP-M having advantages in terms unit cost and available on a large scale. This could ultimately lead to decreased reliance on SOP as a potassium source for tobacco
- Few studies evaluating polyhalite as a K₂O source in tobacco motivated establishing two trials in Yunnan province in China

Objectives

 To assess whether the tobacco crop responds to potassium and other nutrients present in POLY4 in the Yunnan region of China

9 SOP 263 - 95

Experiment design

Experimental design at each site was a randomised block design with three replications.
 Plot area was 30 m²

Statistical analysis

Statistical analysis was carried out using GenStat software version 17 (VSN International, 2011) using ANOVA and regression analysis. Treatments of interest in source study were compared by using single degree of freedom contrasts.

Results

Table 3 – Summary of ANOVA p values for yield and yield attributes in 2014

Variable	Control	Control * Type	Control * Rate	Control * Type * Rate
Yield (kg ha ⁻¹)	<0.001	ns	ns	ns
1 st class yield (kg ha ⁻¹)	<0.001	ns	0.003	ns
2 nd class yield (kg ha⁻¹)	<0.001	ns	ns	ns
3 rd class (kg ha⁻¹)	ns	ns	0.055	ns
Financial returns on total yield (Yuan ha ⁻¹)	<0.001	ns	<0.001	ns
1 st class returns (Yuan ha⁻¹)	<0.001	ns	0.003	ns
2 nd class returns (Yuan ha⁻¹)	<0.001	0.027	0.001	ns
3 rd class returns (Yuan ha⁻¹)	ns	ns	ns	ns
Total K Uptake (g plot⁻¹)	<0.001	ns	<0.001	ns
Reducing Sugars (%)	ns	0.003	0.094	ns
Bacterial wilt incidence rate (% occurrence)	<0.001	ns	ns	<0.001
Black shank incidence rate (% occurrence)	<0.001	<0.001	<0.001	<0.001

- What is the effect of POLY4 as K₂O source on tobacco yield, yield attributes and quality parameters?
- Are POLY4 and SOP rate response curves similar in terms of yield, yield attributes and quality parameters?

Methods

- Location was Xundian Daheqiao farm, Yunnan Agricultural University
- Genotype was FCV tobacco YN-87
- N and P₂O₅ were applied at local recommended rates
- Plant population was 15000 plants ha⁻¹
- Method of fertilizer application was in a hole 5 cm away from plant at the time of transplanting by hand
- Transplanting date was 2nd, May 2014 and harvesting was done 5 times
- Crop was cultivated under rainfed conditions.

Table 1 – Summary of soil analysis at the experimental sites

Table 4 – Summary of ANOVA p values for yield and yield attributes in 2015

Variable	Control	Control * Type	Control * Rate	Control * Type * Rate
Yield (kg ha ⁻¹)	<0.001	ns	ns	ns
1 st class yield (kg ha ⁻¹)	<0.001	0.089	0.052	0.029
2 nd class yield (kg ha ⁻¹)	0.005	ns	ns	ns
3 rd class (kg ha ⁻¹)	ns	ns	ns	ns
Financial returns on total yield (Yuan ha ⁻¹)	<0.001	ns	0.005	ns
1 st class returns (Yuan ha⁻¹)	<0.001	ns	<0.001	<0.001
2 nd class returns (Yuan ha ⁻¹)	<0.001	ns	<0.001	<0.001
3 rd class returns (Yuan ha⁻¹)	ns	ns	ns	ns
Bacterial wilt incidence rate (% occurrence)	<0.001	ns	0.083	0.026
Black shank incidence rate (% occurrence)	<0.001	0.024	ns	0.013

Figure 5 – Average black shank disease incidence rate as influenced by source of K₂O in (a) 2014 and (b) 2015

Conclusions

Control

(a)

Black shank ncidence rate

• POLY4 was as effective as SOP in enhancing tobacco cured leaf yield, economic returns and the cured leaf K uptake values

POLY4 resulted in significantly enhanced reducing sugars than SOP in 2014

Potassium application consistently reduced Black shank and Bacterial wilt incidences in 2014 when

soil K levels was 125 mg kg⁻¹. However, in 2015 when initial soil K was 216 mg kg⁻¹ Black shank and

Bacterial wilt incidences were not reduced by fertilizer potassium application.

