

Efficient Use of Manure Nitrogen by Corn with Canopy Reflectance Guidance of Sidedress Application

Juan Pablo Garcia¹, Charles Wortmann¹ and Tim Shaver²

All authors: University of Nebraska (1) Agronomy and Horticulture Department Lincoln, NE (2) West Central Research and Extension Center, North Platte, NE

Objectives

Research was conducted to adapt corn canopy
sensor technology for manured corn fields. The
objectives were to:

- Determine the fertilizer N substitution value of organic N in feedlot manure
- Calibrate the algorithm for corn canopy sensor technology for manured fields.

Introduction

Nebraska finishes ~5,000,000 beef cattle yr⁻¹ excreting about 35 kg head⁻¹ N. Much N is lost to volatilization, but about 16 kg yr^{-1} head⁻¹ of organic N is land applied. This totals ~80,000 Mg yr^{-1} , equal to the fertilizer N need of about 450,000 ha of corn. However, low predictability of manure organic N availability often causes farmers to apply more fertilizer N to manured fields than is needed resulting in low N use efficiency (NUE). Use of crop canopy sensors to quantify light reflectance from the crop leaves, assess leaf N level, and guide variable rate side-dress application of fertilizer N is well developed for corn production in Nebraska but not for manured fields. Variable rate side dress N application in response to canopy reflectance for manured fields has a great potential for improved NUE.

Experimental and treatments design

16	201

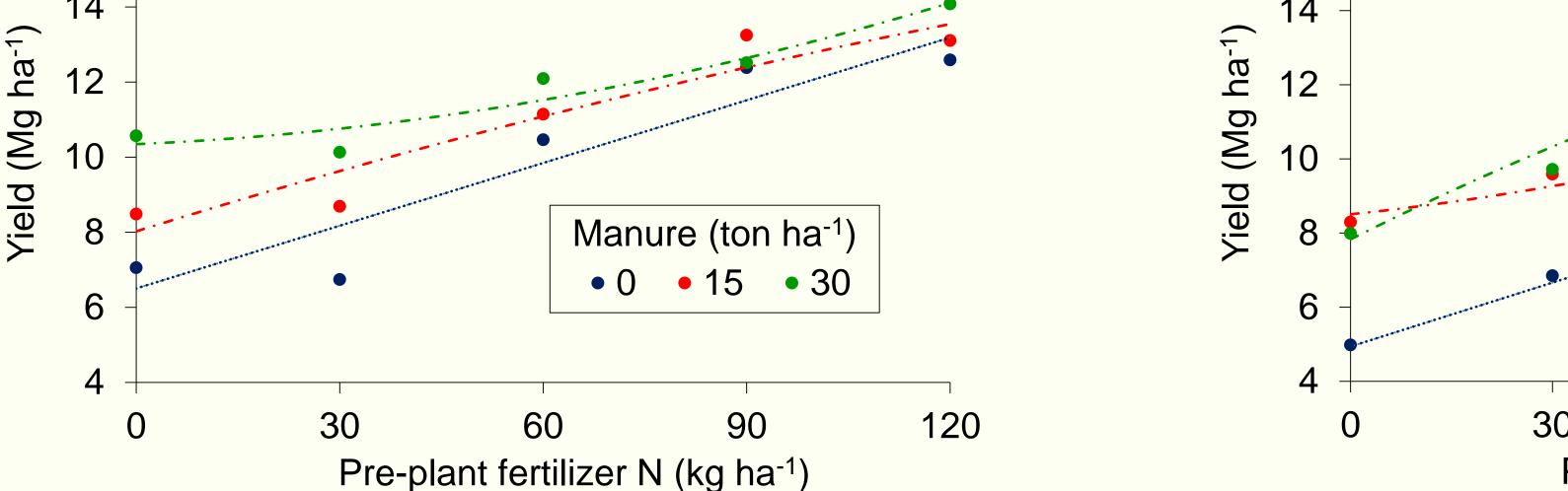
Fig. 1

Yield response and fertilizer N substitution values

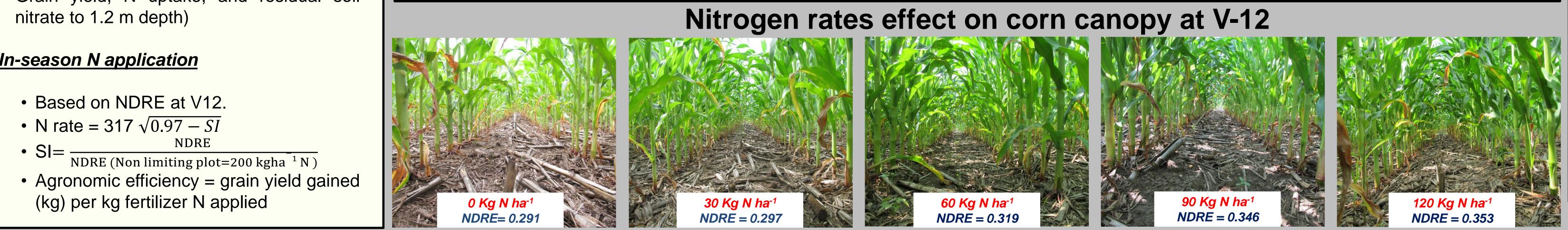
¹⁶ 7 **2016**

Results

Jebraska

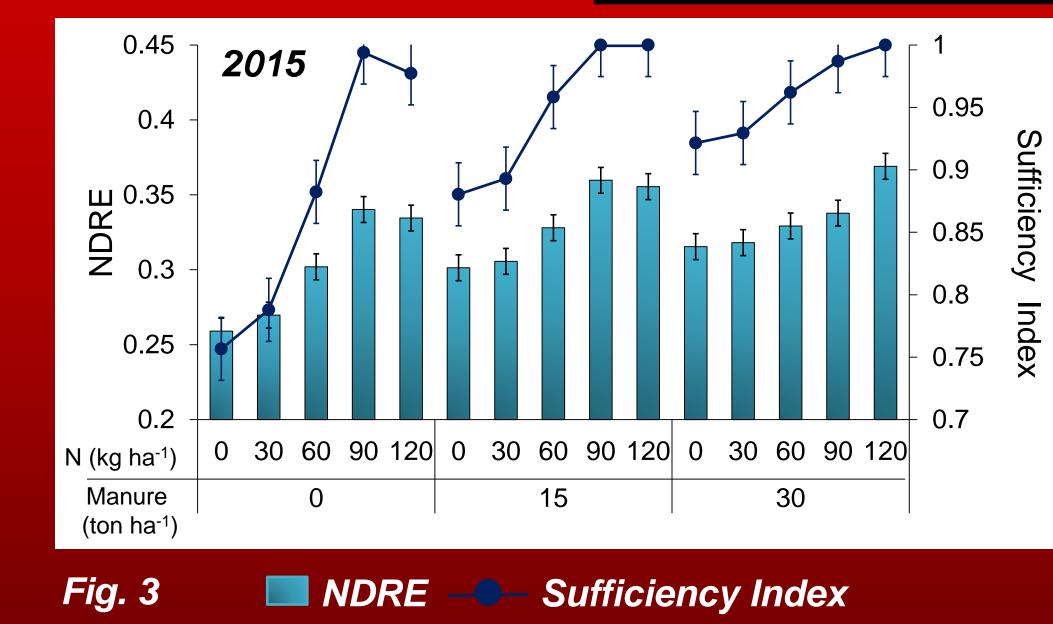

- The fertilizer N substitution value of manure was 0.33 and 0.43 kg kg⁻¹ of organic N applied for the first and second crop, respectively, following application. Manure and N rates did not affect the N substitution value except for a generally greater value with 0N compared to with fertilizer N applied for the 2015 crop (Table 1; Fig. 1 and 2)
- The residual N effect of manure application was greater during the second year compared with the first year (Table 1)

- Irrigated, no till, continuous corn in eastern Nebraska.
- Split-split plot organized on blocks with four replications
 - Whole plot: 0, 15 and 30 Mg ha⁻¹ feedlot surface applied without manure incorporation. The manure N content was 0.09 and 5.45 kg Mg⁻¹ of NH₄-N and organic N, respectively
 - Split plot: 0, 30, 60, 90 and 120 kg ha⁻¹ N • Split-split plot: with or without sensor guided in-season N application


<u>Measurements</u>

- V8 to R6 measurements:
 - Normalized Difference Red Edge Index (NDRE) (Holland Scientific CS-45)
 - Leaf Area Index (Li-Cor Plant Canopy Analyzer-2200C)
- Grain yield, N uptake, and residual soil nitrate to 1.2 m depth)

In-season N application



Manure (ton ha ⁻¹)	15	30
Total Organic N applied (kg ha ⁻¹)	81.7	163.5
N substituted 2015 (kg N per kg N organic)	0.40	0.27
N substituted 2016 (kg N per kg N organic)	0.47	0.39
Table 1		

- NDRE at V12 was increased with manure application and for pre-plant N rate up to 90 kg ha⁻¹ N (Table 3 and Fig. 3 and 4)
- For both years, in season N application based on sensor reading at V12 was reduced by increased pre-plant N or manure rates (Fig. 3 and 4)
- NDRE and sufficiency index values were affected by manure application and for pre plant N rates of 90 and 120 kg ha⁻¹ (Fig. 3 and 4)
- Yield was no affected by manure x N interaction. Yields were similar for in-season N application for all preplant N rates except for higher yield with the 120 kg N preplant N rate in 2015 (Table 3; Fig. 6)
- For in season N application treatments, manure application and preplant N rate did not affect N AE (Fig. 5; Table 3)
- Similar yield and AE across treatments

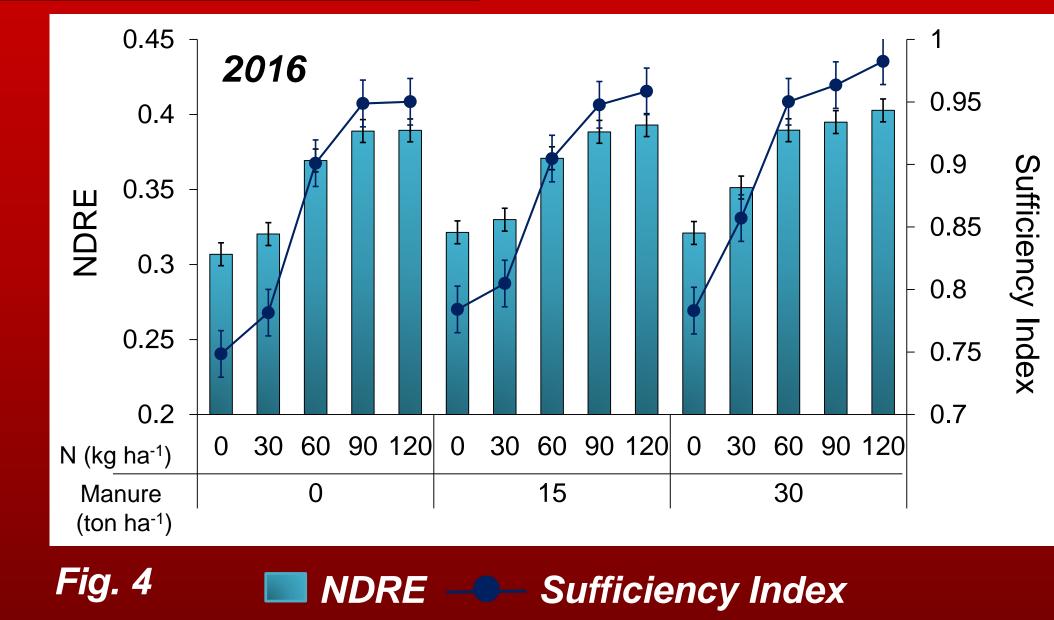

Treatments effect on NDRE and Sufficiency Index at V12 (2015-2016)

Table 2		NDRE			
		2015		2016	
		Estimate	Pr > f	Estimate	Pr > f
Year		0.322 A	<.0001	0.3625 B	<.0001
Manure (ton ha ⁻¹)	0	0.301 C		0.355 <mark>B</mark>	
	15	0.330 AB	0.0029	0.360 AB	0.003
	30	0.334 A		0.372 A	
Nitrogen (kg ha ⁻¹)	0	0.292 c		0.316 c	
	30	0.298 c	<.0001	0.339 c	<.0001
	60	0.319 b		0.376 b	
	90	0.346 a		0.391 ab	
	120	0.353 a		0.395 a	
Manure*Nitrogen		0.075		0.783	
Year * Manure		0.006			
Year*Nitrogen			0.017		

0.494

Year * Manure * Nitrogen

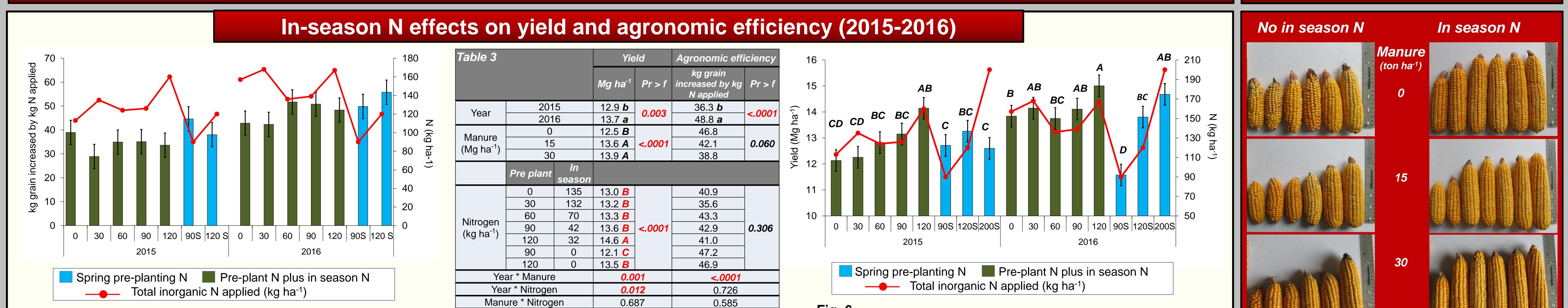
Manure (ton ha⁻¹)

• 0 • 15 • 30

120

Fig. 2

90


Pre-plant fertilizer N (kg ha⁻¹)

indicate good performance of the algorithm.

Conclusions

 Feedlot manure and pre-plant fertilizer N rates do not affect the N substitution values for manure organic N during the two years after manure application

• The current algorithm for sensor guided in-season N application at was developed V12 that for unmanured fields worked well for manured fields in both years

0.446

Fig. 6

Fig. 5