

All About Discovery!

drip-irrigation on warm-season grasses

Matteo Serena*, Bernd Leinauer, Elena Sevostianova and Mino Sportelli

Department of Extension Plant Sciences, New Mexico State University

* Poster presenter; mserena@nmsu.edu

Table 1. Climate data for

Poster No. 1707

Introduction

- In light of drought conditions and resulting water shortages, and water conservation strategies have been implemented in the arid southwestern part of the US.
- Turf areas play an important role in our society and we should do everything to maintain it in a sustainable manner.
- Subsurface drip irrigation can maintain adequate turf quality even applied at 50% ETos compared to traditional overhead sprinkler irrigation (Schiavon et al, 2014).

Objectives

A study was conducted at New Mexico State University

- to investigate the effects of low ET-replacement turfgrass irrigation from a subsurface drip system on warm-season turf.
- to determine the minimum irrigation level needed to maintain an acceptable turf quality, and therefore quantify the amount of water conservation potential when using subsurface drip irrigation

Materials and Methods

> Las Cruces, New Mexico State University, arid 1265 m; USDA Plant Hardiness Zone 8. \blacktriangleright June 1st 2015 to November 15th 2015 and June 1st 2016 to November 15th 2016

the study period at the
turfgrass salinity research
center, Las Cruces, NM

	C	F	C	F	C	F	mm	in	mm	in
May	28.8	83.8	12.3	54.1	21.2	70.2	31.0	1.2	215.2	8.1
June	35.2	95.4	20.5	68.9	28.3	82.9	22.4	0.9	237.5	8.6
July	34.9	94.8	21.1	70.1	27.7	81.8	42.9	1.7	183.1	7.0
August	35.0	95.0	22.0	71.6	28.3	83.0	19.1	0.8	191.7	7.0
September	32.4	90.3	19.2	66.5	25.7	78.2	6.4	0.3	155.4	5.6
October	25.6	78.2	12.9	55.2	18.9	66.0	46.0	1.8	111.5	4.0
November	19.0	66.2	4.1	39.3	11.2	52.1	20.8	0.8	77.0	2.7

Agronomy Crop Science

Figure 1. Aerial view of the study area, September 2nd 2015.

Figure 2. Soil moisture (m³ m⁻³) at 5cm depth for subsurface drip irrigation at 4 level of irrigations irrigation. Vertical bars indicate precipitation (mm) events June 1st to November 15th 2015.

- > Turfgrasses: Bermudagrass (*Cynodon dactylon* L.) var. Princess 77 and Seashore paspalum (Paspalum vaginatum O. Swartz) var. Sea Spray (originally established in 2009).
- Irrigation: 1) Subsurface drip irrigation Toro DL2000 (The Toro Company, Riverside, CA), installed according to specifications (10 cm below ground and 30 cm emitter spacing).
- Four irrigation treatments based on ETos (Snyder and Eching 2007):

10%, 25%, 40%, 55%, with irrigation applied every other day.

- Plots were mowed twice per week at a height of 2 cm and clippings were collected. > Data:
 - 1. Turfgrass quality [on a scale from 1 to 9, (1 = dead turf and 9 = dark green, uniform turf)];
 - 2. Green cover (%) and color (DGCI) determined bi-weekly from digital image analysis (SigmaScan[®] Pro 5; Systat Software Inc., San Jose, CA).
 - 3. Normalized difference vegetation Index (NDVI) by mean of a Greenseeker[®] (Trimble Navigation Limited, Sunnyvale, CA)
- > The experimental design was a randomized complete block with irrigation level as the main block treatment and grass species (plot size 7 m by 7 m) and sampling date as the subplot treatments. All treatment factors were replicated 3 times.
- > Data were subjected to an analysis of variance (ANOVA) using SAS Proc Mixed followed by

Data and Results

- Our study did not include a corresponding overhead irrigation treatment, however in previous studies we were unable to sustain turfgrass below 55% ETos replacement if irrigation was applied from a pop-up sprinkler system (Schiavon et al., 2014).
- With the help of limited summer precipitation (Table 1), all irrigation treatments resulted in acceptable turfgrass quality (≥ 6) in June, July and August.
- During September and October the 10% and 25% ETos irrigation treatments resulted in quality ratings of 5.8, which were lower than for 45% (7.9) and 55% (8.3) (Figure 1).
- Grass species differed in quality only in October and November, during which seashore paspalum exhibited higher turfgrass quality and DGCI compared to bermudagrass.
- No difference in fall color retention between irrigation treatments was found for each of the 2 turfgrass species.
- Soil moisture differed between irrigation treatments, but several rain events during the research period helped in providing adequate moisture even for the lowest ET replacement levels.(Figure 2).

Conclusions

multiple comparisons of means using Fisher's LSD test at the 0.05 probability level.

References

Schiavon, M., B. Leinauer, M. Serena, B. Maier, and R. Sallenave. 2014. Plant Growth regulator and soil surfactants' effects on saline and deficit irrigated warm-season grasses: I. Turf quality and soil moisture. Crop Sci.54:1-12. doi:10.2135/cropsci2014.10.0707 Snyder, R.L., and S. Eching. 2007. PMDay.xls spreadsheet software for estimating daily or hourly reference evapotranspiration using the Penman-Monteith equation. University of California, Davis. <u>http://biomet.ucdavis.edu/Evapotranspiration/</u>PMdayXLS/PMday.xls (accessed 10 August 2015).

Subsurface drip-irrigation offers the potential to apply irrigation at very low ET-replacement levels.

We estimate water savings as high as 40% on warm season grasses when irrigation is applied from a subsurface drip-irrigation system.

Acknowledgements

NMSU's Agricultural Experiment Station NMSU's Facilities and Services

