

Project SENSE*: Demonstrating and Encouraging Sensor Based Nitrogen Management

John Parrish¹, Brian Krienke¹, Richard Ferguson¹, Joe Luck², Keith Glewen³, Laura Thompson³, Nathan Mueller³, Troy Ingram³, Dean Krull¹, Joel Crowther¹, Tim Shaver¹, Taro Mieno⁴ ¹Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska ²Department of Biological Systems Engineering, University of Nebraska, Lincoln, Nebraska Extension, University of Nebraska, Lincoln, Nebraska ⁴Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska, Lincoln

Introduction

- There is evidence in Nebraska of a plateau in gains in nitrogen use efficiency (NUE) in corn production. (Ferguson, 2015)
- Applying nitrogen (N) fertilizer before or early in the growing season exposes N to losses due to little to no crop N demand.
- Determining efficient rates prior to the growing season may result in excessive N rates.
- Crop canopy sensors, used to direct in season applications, may help in in increasing NUE while maintaining yields. (Samborski, 2009)
- Active crop canopy sensors work by emitting a light and use filters to read the reflectance in visible and near infrared wavelengths. These wavelengths are used to calculate a vegetation index this calculated index is compared to a reference index and used to calculate a nitrogen rate by use of an algorithm specific to which index was calculated.
- Project SENSE is a component of the Nebraska On-Farm Research Network to encourage adoption of in-season N application, particularly with sensor-based management

Results and Discussion

- SENSE treatments yielded less, had less applied N, while increasing NUE and marginal net return across all sites (Table 1).
- 11 of 15 sites were more profitable and increased NUE for SENSE treatment (best case) (Figure 2).
- 1 site was less profitable and decreased NUE (worst case) (Figure 2).
- SENSE treatments received less applied N for each site (Figure 3).

Δ: (SENSE - Producer)

Research Objectives

- 1. Compare N rates and yields obtained by using producer management to crop canopy sensor-based management.
- Compare NUE from producer N management strategies to NUE from crop canopy sensor-based N management.
- 3. Increase awareness of crop canopy sensors as a technology for directing N fertilization and encourage adoption of this technology.

Methods

Treatments:

EXTENSION

- Sensor management (SENSE): Producers applied 84 kg N ha⁻¹ near the time of planting. Ag leader[®] OptRx[®] sensors mounted on a high clearance applicator (Figure 1) were used to direct a one time application of N fertilizer between V8 and V12 growth stages.
- Producer management: N fertilizer was applied using the respective producer's selected rate and timing.
- Treatments were applied in a randomized complete block design with six replications. Harvest data was collected by the farmers' yield monitor in their combine. Yield data was cleaned and adjusted to 0.155 kg kg⁻¹ moisture

Table 1 (above): Comparison of yield, N rate, PFP_N , and marginal net return across all sites. Letters that are different indicate significant differences using Fischer's LSD with an alpha = 0.05.

*Grain price of \$14.4 Mg⁻¹ and \$1.43 kg N⁻¹ were used to calculate marginal net return.

Figure 2 (right): Compares the relative difference in financial return (marginal net return) vs. nitrogen use efficiency (PFP_N). Where delta equals the producer treatment subtracted from the SENSE treatment (i.e. SENSE - Producer). Labels refer to each site.

content using Yield Editor (v 2.0.7). As applied N rate was recorded for SENSE treatments; N rates for grower treatments were reported by the cooperator. Yield and N application points were averaged for each treatment strip. Data was analyzed and summarized using ArcGIS 10.3.1, and Proc GLIMMIX (SAS 9.4). Means were separated using Fisher's LSD.

Figure 3: Individual yield and applied N rate for each site by treatment where P is producer management and S is SENSE management. Nitrogen application rate using the primary axis is broken into applied base rates (near time of planting) represented by gray shaded bars, and the in-season application rate represented by the red or blue shaded bars. Yield for each site is represented along with standard error bars for comparison using the secondary axis.

Conclusions

- Sensor based N applications reduce N rates overall compared to producer practices in 2015.
- Canopy sensor-based application increased PFP_N compared to producers' management in 2015.
- At 4 sites in 2015 producer management was more profitable than sensor-based management. More detailed research is underway to explore ways to improve the accuracy of sensor on crop canopy sensor applications.

References

Ferguson, R.B. 2015. Groundwater quality and nitrogen use efficiency in Nebraska's Central Platte River valley. J. Environ. Qual. 44(2): 449-459. Samborski, S.M., Tremblay, N., and Fallon, E. 2009. Strategies to make use of plant sensors-based information for nitrogen recommendations. Agronomy Journal. 101(4): 800–816.

Acknowledgements

Figure 1: High clearance applicator with crop canopy sensors and drop nozzles used to apply the SENSE treatments.

Nebraska's

Natural Resource

Natural Resources Districts

Disclaimer: All products and tradenames referred to in this poster do not imply endorsement of such products.

