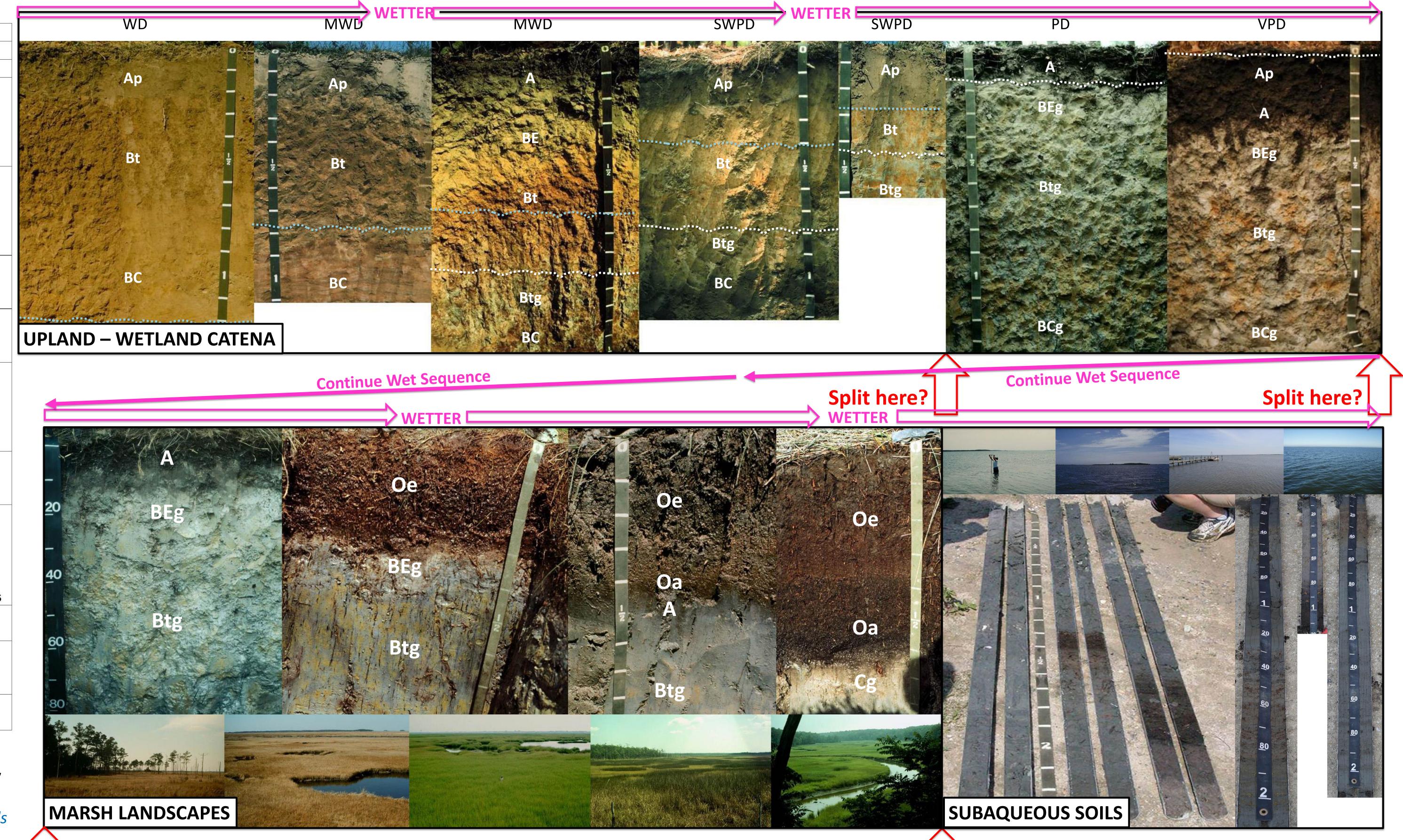
Is There a Case to be Made for a "Wet" Soil Order?

Martin Rabenhorst¹, Mark Stolt², and David Lindbo³

1-Department of Environmental Science and Technology, University of Maryland 2-Department of Natural Resources Science, University of Rhode Island 3-Soil Science Division, USDA-NRCS, Washington, DC

www.enst.umd.edu

Contact: Martin Rabenhorst mrabenho@umd.edu


ABSTRACT

Early soil classification systems recognized wet soils at the highest categorical level. Bog soils and half-bog soils were among the great soil groups in the US classification utilized between the 1920s and 1960. In other systems, groups named with such terms as ground water gley and pseudogley were also used. With the advent of Soil Taxonomy and it's precursor (1960, 1975), histosols (organic soils) were distinguished as one of the initial 10 soil orders, and while many of these organic soils are wet soils, some are not (Folists for example). Thus, for over 50 years, with the exception of Histosols, wet soils (which typically represent the wettest end of subaerial wet soils) have not been collectively recognized within taxa at the highest categorical level (order). Rather, wet soils were designated at the second categorical level as wet (aqu) suborders among the various soil orders, and more recently, subaqueous soils as wass suborders. Notwithstanding, other contemporary soil classification systems do (continue to) recognize wet soils at the highest level. In the World Reference Base (WRB) for example, wet soils are designated as Gleysols or Stagnosols. As efforts are underway to revisit, simplify and revise Soil Taxonomy, questions have been raised regarding whether wet soils should again be moved back with a place among taxa at the highest category using names such as Hydrasols, Aquasols, etc. This paper will explore and consider the questions and arguments for and against such proposals.

SOME ARGUMENTS FOR ESTABLISHING A WET SOIL ORDER

- The National Soil Survey Handbook (Soil Survey Staff, 2015) recognizes over 30 interpretations that are driven by the depth of the water table. Therefore, establishing a wet soil order would permit recognition of one of the most important properties governing interpretations (extreme or extended periods of soil wetness) at the highest categorical level.
- When Soil Taxonomy was developed over 50 years ago, hydric soils and wetlands were considered of low economic and environmental importance, but in the intervening decades they have become recognized as providing valuable ecosystem services. Therefore, establishing a wet soil order could help in developing a better correspondence between Soil **Taxonomy and hydric soils,** although we understand that specific morphological indicators for hydric soils will continue to be developed regionally.
- The WRB recognizes wet soils (Gleysols and Stagnosols) at the highest level as reference soil groups. Therefore, establishing a wet soil order would be more like the WRB and would be consistent with the guiding principles to: "complement the concepts used in other soil taxonomic systems (specifically the WRB)". This should improve "buy in" from the international community.
- Currently, Aqu suborders are defined differently depending on the order. The complexity arising from these differences make the learning and use of *Soil Taxonomy* much more difficult. Therefore, establishing a wet soil order would permit application of more uniform (and simplified) criteria in the recognition of wet soils across the spectrum.

From Table	From Table 2. Classification of Soils on the Basis of their Characteristics ¹					
VI	V	VI				
	Soils of the cold zone	Tundra				
		Desert				
		Red Desert				
	Light colored soils of arid regions	Sierozem				
		Brown				
		Reddish-Brown				
		Chestnut				
Zonal	Dark colored soils of the semi-	Reddish Chestnut				
	arid, subhumid, and humid	Chernozem				
	grasslands	Prairie				
		Reddish Prairie				
	Caile of the forest greedend	Degraded Chernozem				
	Soils of the forest-grassland	Noncalcic Brown or				
	transition	Shantung Brown				
		Podzol				
	Light colored podzolized soils of	Brown Podzolic				
	the timbered regions	Grey-Brown Podzolic				
		Yellow Podzolic				
	Lateritic soils of forested warm	Red Podzolic				
		Yellowish-Brown Lateritic				
	temperature and tropical regions	Reddish-Brown Lateritic				
		Laterite				
		Solonchak				
	Halomorphic	Solonetz				
		Soloth				
		Wiesenboden				
Intrazonal	Hvdromorphic	Bog Half-Bog				

Intrazonal

Intrazonal	Hydromorphic	Planosols Ground-Water Podzols Ground-Water Laterites		
	Calomorphic	Brown Forest		
	Calomorphic	Rendzina		
		Lithosols		
Azonal		Alluvial soils		
		Sands, dry		
1-Baldwin	, M., Kellogg, C. E. & Thorp, J. 1938. 9	Soil Classification. In: Soil and		
Men, Year	book of Agriculture. USDA, US Govt.	Print. Office, pp. 979 – 1001.		

GUY SMITH'S RATIONALLE IN SOIL TAXONOMY

When asked specifically why wet soils were handled the way they were in Soil Taxonomy . . .

• Acknowledgment "In Soil Taxonomy we divided up the wet soils and we put them at the suborder level, not at the order level," "most other taxonomies have an all wet soils group." "the Europeans . . . want one order for all the wet soils."

Split here?

- Explanation: "There was a zonality to the soils with aquic moisture regimes and this would be best reflected if the aquic soils with aquic moisture regimes were separated below the order level."
 - "compared the yields on the plots that were all Udolls and the plots that were all Aquolls (had been drained). . . . they were identical."
 - "if one goes into the Southeast, in the region of Ultisols, one would have the same experience, that after drainage the naturally poorly drained soils will behave like the naturally well drained soils of that area."

WORLD REFERENCE BASE (WRB) 2014

Overview of Key to Reference Soil Groups										
Histosols	79	Solonchaks	86	Planosols	93	Gypsisols	100	Cambisols	107	
Anthrosols	80	Gleysols	87	Stagnosols	94	Calcisols	101	Arenosols	108	
Technosols	81	Andosols	<mark>88</mark>	Chernozems	95	Retisols	102	Fluvisols	109	
Cryosols	82	Podzols	89	Kastanozems	96	Acrisols	103	Regosols	110	
Leptosols	83	Plinthosols	90	Phaeozems	97	Lixisols	104			
Solonetz	84	Nitisols	91	Umbrisols	98	Alisols	105			
Vertisols	85	Ferralsols	92	Durisols	99	Luvisols	<mark>106</mark>			

POSSIBLE PROPOSAL - A new order for wet mineral (not-organic) soils

Possible name: Hydrasols or Aquasols

Wet Soil Order Criteria: several possibilities depending on the intention and where to split along the wet continuum 1. Current Aqu suborders: Include very poorly, poorly , and at least some somewhat poorly drained soils

sustained aquic conditions within 40 cm of the soil surface

Considerations:

a. would include many soils across most orders, some of which are not especially wet (easily drained) b. Guy Smith's argument regarding zonality of wet soils suggests keeping these within other orders

2. Typic/not-Aeric portions of current Aqu suborders: exclude marginally wet soils (somewhat poorly drained)

Split here?

sustained aquic conditions within some shallower depth - 25 cm of the soil surface? 10 cm of the surface? **Considerations:**

Gleysols GL: Groundwater-affected soils, underwater soils and soils in tidal areas **Stagnosols** ST: Stagnating water, structural difference and/or moderate textural difference a. takes only those soils that are wettest

b. Guy Smith's argument regarding zonality of wet soils may still argue for keeping these within other orders 3. Peraquic soils: essentially permanently wet, such as swamps, marshes, bogs, fens etc, supporting emergent vegetation nearly continuous aquic conditions at or near the soil surface **Considerations:**

> a. This break includes only soils that have little potential for drainage or agriculture; the wettest of wet soils b. This leaves many very wet soils outside of this class of wet soils

4. Subaqueous soils: permanently flooded too deep to support emergent vegetation

use current definition for Wass suborders of Entisols

Considerations:

- a. This break would separate only soils in subaqueous landscapes, a very narrow concept of the wettest soils. b. It would be the easiest to implement and would have smallest impact on present *Soil Taxonomy*
- c. A great many wet soils would not be included within this order of wet soils.