Impacts of biochar on nitrogen cycling microbial communities and nitrous oxide emissions

Joseph D. Edwards¹, Cameron M. Pittelkow², Wendy H. Yang^{3,4}, Angela D. Kent^{1,3}

¹Department of Natural Resources and Environmental Sciences, ²Department of Crop Sciences, ³Program in Ecology, Evolution and Conservation Biology, ⁴Departments of Plant Biology and Geology, University of Illinois

Introduction

- 80% of anthropogenic N_2O emissions are estimated to come from agricultural soil management
- Biochar can influence microbial processes and N₂O emissions, yet mechanisms remain unclear
- Lab microcosms indicate biochar influences denitrificationand nitrification-mediated N_2O production, however few field experiments have quantified relationships over growing season

Objectives

- Determine seasonal N₂O emissions from a maize field in response to biochar and N fertilizer application
- Evaluate relationships between biochar-induced changes in microbial processes, soil inorganic N availability, and N_2O emissions

Hypothesis

- Biochar will alter microbial community function by decreasing denitrification activity to a greater extent than increasing nitrification activity
- Biochar will decrease total N₂O emissions over the course of a season

Methods

Four treatments:

- Control 1.
- 2. 100 Mg ha⁻¹ biochar
- 269 kg N ha⁻¹ (UAN fertilizer broadcast) 3.
- 100 Mg ha⁻¹ biochar + 269 kg N ha⁻¹ 4.

Field N₂O fluxes measured using static flux chambers

Soil samples assayed for inorganic N, moisture, and potential enzyme activity.

DNA extracted to determine functional gene copy number using qPCR.

Results

*Significant differences between biochar & non-biochar treatments, p < 0.05 (Fertilized, Unfertilized)

1. Soil nitrate was higher in biochar plots and ammonium lower in fertilized biochar plots for majority of season.

4. Potential nitrification rates were higher for fertilized biochar plots early in the growing season, whereas potential denitrification rates were lower in biochar treatments throughout the season.

Biochar Properties	
Source	Yellow pine pyrolyzed at 550C
Bulk Density	0.224 g/cm ³
Organic Carbon	80.8% total mass
Total Nitrogen	0.63% total mass
C:N	128.3
Hydrogen/Carbon (H:C)	0.33 molar ratio (0.7 Max)
Total Ash	9.6% total mass
pH value	9.89
Surface Area Correlation	459 m²/g dry

3. Cumulative N₂O fluxes for June-Sept were lower with biochar, leading to significant full season differences in unfertilized treatments.

Conclusions

- 1. In unfertilized plots, biochar was associated with reduced N₂O emissions over the entire growing season.
- 2. In fertilized plots, biochar led to reduced N_2O emissions only later in the season.
- 3. Early in the season, fertilized biochar treatments showed higher rates of potential nitrification and greater copy numbers of the nitrification associated functional gene amoA.
- Potential nitrification rates for biochar treatments were more sensitive to N availability than non-biochar treatments.
- 5. Biochar treatments exhibited lower rates of potential denitrification despite no significant differences in copy number of denitrificationrelated functional genes.
- Effect of commercially available biochar on 6. field N₂O emissions and microbial activity differed depending on N addition, with biochar mitigating N₂O emissions for some portion of the growing season in both unfertilized and fertilized treatments.

ACKNOWLEDGEMENTS

UIUC Office of Undergraduate Research, Kent Lab, Pittelkow Lab