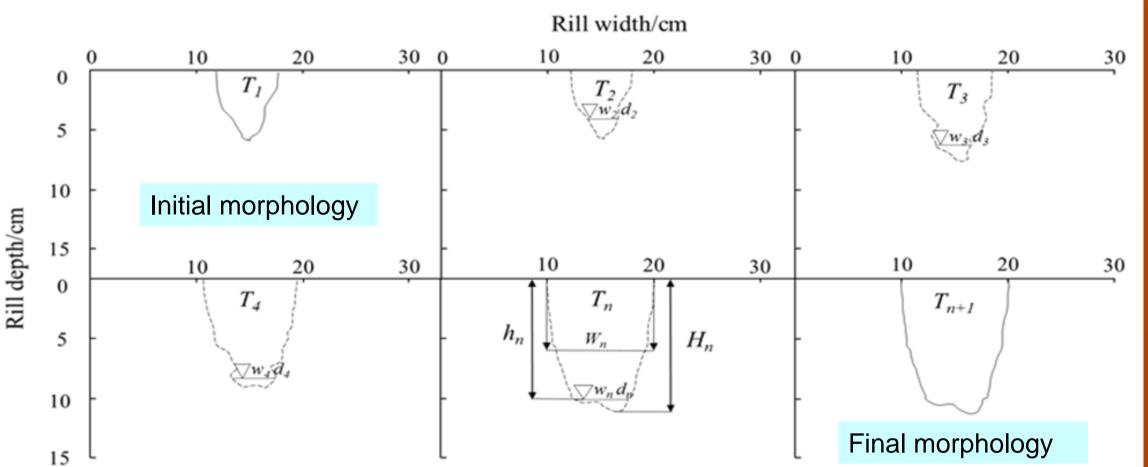

Non-Contact Measurements of Rill Geometry and Flow Characteristics Based on Photogrammetry

Chao QIN^{1,2}, Fenli ZHENG^{1,3}, Robert R. WELLS², Ximeng XU^{1,2} 1 Northwest A & F University, Yangling, CN; 2 USDA-ARS National Sedimentation Laboratory, Oxford, MS, US; 3 Institute of Soil and Water Conservation, CAS & MWR, CN

Introduction

- ✓ Photogrammetry is widely used in detecting micro changes of landscape morphologies.
- ✓ Accurate measurements of rill geometry and flow parameters provide theoretical basis for erosion model based-process and its control.


Setting cameras: Position: paralleled to Shooting: RAW Scene mode: manual

						depth, calculated rill flow depth and measured rill T_2 , T_5 , T_8 , T_{11} and T_{14} . cm										
S _D /(°)	S _L		T ₂			T 5			T ₈			T ₁₁			T ₁₄	
		<i>h</i> ₂	d ₂	<i>W</i> ₂	h_5	d_5	<i>W</i> ₅	h ₈	d ₈	<i>W</i> ₈	h ₁₁	d ₁₁	W ₁₁	h ₁₄	d ₁₄	W ₁₄
	142	6.28	0.17	1.66	6.50	0.18	1.77	6.72	0.19	1.73	6.93	0.21	1.85	7.15	0.22	1.76
15	108	5.29	0.12	2.85	5.49	0.15	2.69	5.72	0.15	2.64	5.91	0.18	2.55	6.13	0.19	2.89
15	74	5.60	0.18	3.25	5.78	0.20	3.10	5.97	0.21	3.19	6.16	0.22	3.29	6.36	0.22	3.16
	40	1.38	0.12	4.43	1.74	0.13	3.69	2.09	0.15	3.58	2.46	0.15	3.40	2.79	0.19	3.32
	142	6.12	0.15	1.64	6.53	0.16	1.66	6.95	0.16	1.64	7.35	0.17	1.66	7.77	0.17	1.64
20	108	4.88	0.18	2.38	5.43	0.17	2.40	5.96	0.17	2.46	6.48	0.19	2.28	7.02	0.18	2.21
20			a (-						a 47				a (-	- 10		

✓ Measuring methods for flow depth cannot be fully applied in overland flow due to shallow flow depth (centimeter scale), high sediment concentration and variable and movable rill channel bed.

Hypothesis & Theories

Hypothesis: 1) the changes of channel depth keep constant in a short period of time; 2) rill depth and rill flow depth during inflow are calculated based on interpolation principal.

3.85 0.17 3.01 4.26 0.16 3.15 4.64 0.17 3.20 5.03 0.18 3.17 5.40 0.20 1.26 0.19 3.66 1.68 0.20 3.42 2.11 0.21 3.79 2.54

- \blacktriangleright Increasing rates of rill widths and depths under 20° slope were 1.7 and 1.3 times those under 15° slope.
- ➤ Rill flow widths under 15° slope were 1.7%-13.1% larger than under 20° slope, while rill flow depths showed little difference between the two slopes.

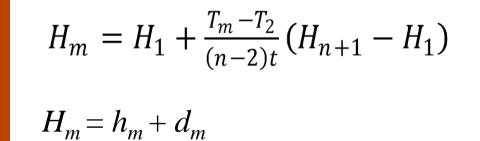

Discussions

Table 4 Rill depth, width and rill flow depth, width measured by manual measurement with steel ruler and photogrammetry.

Be		Slope length	Method	l	Н		N		d	I	N
slope length /(°) /cm			wethou	Avg	Dev	Avg	Dev	Avg	Dev	Avg	Dev
	108	400	Manual	6.0	0.41	9.0	0.47	0.4	0.05	3.2	0.32
		108	Photogrammetry	5.81	0.39	8.89	0.30	0.16	0.03	2.72	0.14
1:	15		Manual	6.4	0.48	7.3	0.27	0.4	0.04	3.3	0.22
		74	Photogrammetry	6.13	0.34	7.32	0.22	0.21	0.02	3.20	0.07
		400	Manual	6.3	1.08	8.7	0.52	0.3	0.05	2.7	0.23
2	108	108	Photogrammetry	6.00	0.91	8.64	0.48	0.18	0.01	2.35	0.10
20	20		Manual	5.0	0.76	10.4	0.26	0.4	0.05	3.4	0.22
	74	Photogrammetry	4.71	0.67	10.29	0.23	0.18	0.02	3.11	0.09	

Fig. 1 Sketch of rill cross-sections at different time phases.

Nomenclature:

 $d_m = H_1 + \frac{T_m - T_2}{(n-2)t} (H_{n+1} - H_1) - h_m$

 T_m : the *m* th shooting time (*m* = 2, 3..n) H_m : Real channel depth at shooting time m H_1 : Real channel depth at shooting time 1 *h_m*: Characterized channel depth gained from photogrammetry at shooting time *m* d_m : Channel flow depth at shooting time m

Materials & Methods

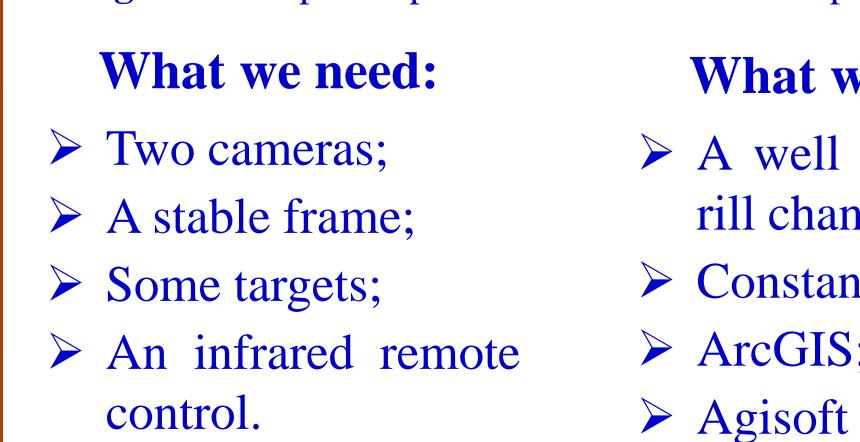
Fig. 2 Development processes of a well developed rill channel.

rill flow characteristics using traditional method during shooting intervals.

Results

Table 1 Measured real rill depth and measured rill width at the timeof T_1 and T_{15} .								
S //?)	e	7	1		T ₁₅	Δ H	∆ W	
S _D /(°)	S _L	H_1	W_1	H ₁₅	W ₁₅	ΔΠ		
	142	6.45	7.33	7.37	8.08	0.92	0.75	
15	108	5.41	8.61	6.32	9.29	0.91	0.68	
	74	5.78	7.08	6.58	7.60	0.80	0.52	
	40	1.50	6.31	2.98	6.64	1.48	0.33	
	142	6.27	8.32	7.94	9.49	1.67	1.17	
20	108	5.06	8.17	7.20	9.28	2.14	1.11	
20	74	4.02	10.06	5.60	10.60	1.58	0.54	
	40	1.01	8.58	2.75	8.80	1.74	0.22	

Table 2 Characterized real rill depth and measured rill width at the time of T_5 , T_8 and T_{11} . cm



Rill depths and rill flow depths obtained by manual measurements with a steel ruler were 3.3%-5.1% and 91.0%-178.5% higher than those obtained by photogrammetry.

Conclusions

Rill width and rill flow width could be directly measured from perpendicularly shot photographs after proportional scale calibration.

- Rill depth and rill flow depth could be measured and calculated based on interpolation principal.
- Compared with traditional methods and 3D laser scanning (Lidar), photogrammetry has speed, **resolution** and **non-contact** advantages and it can also

t we need:		142	
	15	108	
ell developed	13	74	
hannel;		40	
tant inflow;		142	
SIS;	20	108	
	20	74	
oft Photoscan.		40	

	H_5	W_5	H_8	W_8	H ₁₁	W ₁₁
142	6.68	7.65	6.91	7.71	7.14	8.07
108	5.64	8.74	5.87	8.93	6.09	9.08
74	5.98	7.25	6.18	7.33	6.38	7.44
40	1.87	6.39	2.24	6.58	2.61	6.55
142	6.69	8.66	7.11	8.91	7.52	9.46
108	5.60	8.40	6.13	8.73	6.67	8.99
74	4.42	10.18	4.81	10.33	5.21	10.58
40	1.45	8.60	1.88	8.69	2.32	8.73

overcome rill wall shield and prevent the occurrence

of point cloud "black holes".

Contact information: glqinchao@nwsuaf.edu.cn

Publication:

Qin Chao, Zheng Fenli, Xu Ximeng, He Xu. Measurements of Rill Geometry and Flow Characteristics Based on Photogrammetry. Transactions of the Chinese Society for Agricultural Machinery, 2016 (11), doi: 10.6041/j.issn.1000-1298.2016.11.000. http://www.cnki.net/kcms/detail/11.1964.S.20160902.0853.004.html