Quantification and ldentification of culturable DNase producing bacteria
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INTRODUCTION

= The continued release and use of genetically engineered (GE) crops

has become a source of hot debate as they are thought to pose
potential risks to the environment including introgression of genes
with novel traits into soil microbes via natural transformation and
perhaps even into other plants via transformed soil microbes (Hart
et al., 2009).
Plants influence soil functions through the release of root exudates
which consist a wide range of carbon compounds including
extracellular DNA (eDNA) that can serve as a source of nutrients
and genetic information to other organisms. Therefore eDNA cycle is
an interesting area in assessing the perceived unintended effects of
GE crops.
Persistence of eDNA in the environment is greatly hindered by the
presence of extracellular DNases and especially from microbial origin
(Nielsen et al.,, 2007) and thus DNase activity contributes to soil
function as a component of nutrient cycling in particular (N and P).

= There is however little information on how crop species affect

culturable DNase producing soil bacteria in agricultural soils.

OBJECTIVE

= To quantify and identify culturable soil DNase producing bacteria

from leachate samples as influenced by crop species.

RESULTS
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Figure 2. Proportions of culturable DNase producing bacteria (DPB) in
leachate samples in response to crop species. Mixed model ANOVAs
were conducted within dates and different letters above bars indicate
significant differences between means as determined by Fisher’s
protected least significant difference (alpha = 0.05).
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Figure 1. A - E. Illustration of the methods used in the

study. (A); Growth room setup, Randomized complete block
design, 6 replicates, 3 runs. (B); Leachate collection. (C);
Test Agar with DNA-Methyl Green substrate for DNase
activity. (D); Bacterial DNA amplification and Sanger
sequencing done using universal bacterial primers 27F and
1492R (Kumar et al., 2014). (E); Sequence alignment in

[PCR & Sequencing
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Figure 3. Experiment wide phyla proportions of culturable DPB isolates
from leachates based on partial 16S rRNA gene sequences.

= Compared with unplanted control, crop species altered (P < 0.05) the

proportion of culturable DNase producing bacteria (DPB) populations of

the soil which differed across the sampling dates and runs.

= Soybean leachate consistently contained higher proportions of DPB

populations in the 1st and 2™ runs while in run 3 Canola cultured higher
proportions (Fig. 2).

= Proportions of culturable DPB in leachate among treatment means
ranged between 5.57 to 52.08%. An indoor study using transgenic white
poplars reported 62.5 to 100% of total culturables to be nuclease
producing bacteria (Balestrazzi et al., 2007).

= Bacterial isolates were classified into four phyla groups, 11 genera and
the highest proportion of culturable DPB (54%) (Fig. 3) were firmicutes
with 7 different Bacillus species (Fig. 4).

= [solates clustered according to phyla groups with exception of isolate 1-
14SY-Bacillus_mycoides, 5-14SY-Bacillus_thuringiensis and 30-14SL-
Rhizobium_huautlense (Fig. 4). It is possible isolate 30-14SL didn't
cluster within its phyla group due to low identity (85%), for the other

two no apparent explanation could be found at this point.

KEY FINDINGS

= Crop species altered proportion of culturable DPB, however trends were

not always consistent among the runs and sampling dates. To the best of

our knowledge this is the first report of crop species effect on DPB.

= Most culturable DPB were classified as members of the Bacillus genera

belonging to the phylum Firmicutes.

= The results suggest that crop species have a great influence on below-

ground DNase producers abundance. These results are based on
culturable bacteria in leachate samples which constitutes a small fraction

of the total soil bacterial community. Work on soil samples is ongoing.
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Figure 4. Maximum likelihood tree showing relatedness of 71 DNase producing bacterial isolates
recovered from leachates based on partial 16S rRNA gene sequences. Bootstrap values are shown

when >50 based on 1000 replicates
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