Predicting Late-Season Rye Cover Crop Biomass from Early-Season Observations Steven Mirsky¹, Harry H. Schomberg¹, William S. Curran², Chris Reberg-Horton³, Victoria J. Ackroyd¹, John Spargo², and Matthew Ryan⁴ 1. USDA-ARS Beltsville, MD; 2. Pennsylvania State University, University, PA; 3. North Carolina State University, Raleigh, NC; 4. Cornell University, Ithaca, NY

Cereal rye (Secale cereale) provides multiple ecosystem serv such as weed suppression, soil protection, and N and C sequestration. The extent to which services are provisioned generally contingent on biomass production. Understanding biomass response to climate and residual N is fundamental predicting the potential for ecosystem services provision. Furthermore, early season environmental growth responses could be useful for predicting late season biomass and thus management decisions.

Study objective: Characterize response of cereal rye to varying climatic regions and levels of residual soil N

Figure 1. Rye growth study locations in Maryland, North Carolina, and Pennsylvania.

- Figure 4: Beltsville MD 2009 – 2012 > Of the early season measurements, biomass had the greatest (MD10, MD11, MD12) correlation with late season biomass and total N content.
- Kinston, NC 2012 (NCK12) 3.
- Salisbury, NC 2012 (NCS12) 4.

Field Management and Data Collection

- Figure 1. shows locations.
- Table 1. lists field operations.
- Growing degree day (GDD, 4 °C base) and precipitation are presented in Figure 2.
- Rye cultivar 'Aroostook' @ 123-157 kg ha⁻¹.
- Fall N: 0, 30, 60, 90, and 150 kg N ha⁻¹.
- Aboveground biomass and shoot density at Zadok's growth stage (GS) 20-25, 30, and 60.
- Biomass analyzed for total N.
- NDVI using a Crop Circle ACS 210 (590 and 880 nm) or ACS 470 (650 and 760 nm).

Table 1. Field operation dates and mean fall residual soil $[NO_3 +$ NH_{A}]-N in 0 N plots.

	Maryland			Pennsylvania	North Carolina		
	2010	2011	2012	2012	Kinston 2012	Salisk 201	
Field operations							
Rye planting	9-10-09	10-13-10	10-6-11	9-19-11	10-26-11	10-24	
Fall N application	9-21-09	10-25-10	10-6-11	9-19-11	11-22-11	11-22	
GS20-25 sampling	3-25-10	3-2-11	3-1-12	3-12-12	-	2-28	
GS30 sampling	4-20-10	3-28-11	3-22-12	4-3-12	3-7-12	3-19	
GS60 sampling	5-11-10	5-2-11	4-20-12	5-10-12	5-10-12	5-21	
Baseline fall [NO ₃ +	- <i>NH₄]-N</i> kg	N ha⁻¹					
0-30-cm	-	46.0	23.5	21.5	34.6	72	
30-60-cm	-	35.0	20.3	13.9	33.0	57	
60-90-cm	-	34.8	15.7	17.8	30.1	47	
Profile mineral N	_	115.8	59.5	53.1	97.7	177	

Salisbury

2012

10-24-11

11-21-11

2-28-12

3-19-12

5-21-12

72.9

57.0

47.4

177.3

vices,	Figure 3:
is g rye	Biomass response to fall N (slope of linear por plateau) was similar at GS25 and GS30 at each
to s	Mean biomass response across all data was 0. 0.260 at GS25, GS30, and GS60, respectively.
aid in	Maximum biomass occurred at 71.5, 80.7 and

Maximum N accumulation occurred at 84.9 kg N ha⁻¹ (MD10) GS25) to 143.9 kg N ha⁻¹ (MD11 GS30).

GS25, GS30, and GS60,

Fraction of applied fertilizer N recovered ranged from 36% (PSU12) to 83% (MD12) and averaged a little less than 50%.

Difference between GS25 and GS30 correlations to GS60 biomass and total N content may have resulted from early spring weather events (e.g., frost) that negatively impacted cereal rye growth at GS30 but was compensated for by GS60.

Table 2:

- Multiple regression models of early season measurements were generally best fit with three parameters.
- 38 to 65 % of the variance within the models was uniquely attributable to biomass.
- Commonality analysis indicated most of the variance described by other variables was also described by biomass
- Measuring only biomass at GS25 appears to be t approach for estimating GS60 biomass and total

Figure 2. Cumulative GDD and precipitation for seasons in Maryland, North Carolina, and Penns

rtion of linear n location.

.272, 0.298, and

65.0 kg N ha⁻¹ for

Fall-applied fertilizer, kg N ha

Figure 4. Correlation matrix comparing GS25 (left) and GS30 (right) rye biomass (Mg ha⁻¹), N content (kg ha⁻¹), NDVI, and tiller count measurements to GS60 biomass and N content.

S.	Params in Model	Regression Parameter Estimates					R ²	Adj. R ²	C(p)¶	MSE [#]	Root MSE
he best	GS25 vs.GS60	Intercept	VMg ha⁻¹	√Tillers	√%N	NDVI §					
N.	Biomass[†]										
	1	1.632+	0.871	•	•	•	0.53	0.52	16.4	0.146	0.382
	2	2.252	1.199	-0.028	•	•	0.57	0.56	9	0.133	0.365
rye growing	3	1.887	1.176	-0.033	•	1.001	0.60	0.59	4.8	0.125	0.354
sylvania.	4	2.366	1.104	-0.036	-0.268	1.340	0.61	0.59	5	0.124	0.352
	Total N [‡]										
	1	4.576 [‡]	2.906	•	•	•	0.44	0.43	14.6	2.295	1.515
Location and year	2	2.102	2.489	•	5.242	•	0.51	0.49	5.5	2.052	1.432
	3	3.469	3.327	-0.076	5.922	•	0.53	0.51	3.38	1.975	1.405
MD10	4	2.595	3.459	-0.070	5.303	0.490	0.53	0.51	5	1.990	1.411
MD12	GS30 vs.										
PSU12	GS60										
···· NCK12	Biomass [†]										
· - · NCS12	1	2.048	0.525	•	•	•	0.20	0.20	19.6	0.207	0.455
	2	2.475	0.609	•	•	-1.12	0.28	0.26	11	0.19	0.436
Growth stage	3	1.827	0.541	0.027	•	-1.46	0.35	0.32	3.1	0.174	0.417
□ 25	4	1.981	0.539	0.028	-0.15	-1.44	0.35	0.32	5	0.175	0.419
o 30											
△ 60	Total N^{\ddagger}										
	1	3.913 [‡]	2.493	•	•		0.31	0.30	5.7	2.694	1.641
	2	-0.43	2.416	•	3.316	•	0.34	0.33	3	2.594	1.611
	3	-0.53	2.272	0.048	2.328	•	0.35	0.33	3.1	2.57	1.603
	4	-0.57	2.291	0.049	2.427	-0.37	0.35	0.33	5	2.595	1.611

⁺ Square root biomass (Mg ha⁻¹), [‡] Square root of N content (kg ha⁻¹), § Normalized Difference Vegetation Index, ¶ Mallows' C_p, # Mean square error

nass 30	N content GS30	# Tillers GS30	NDVI GS30	Biomass GS60	N content GS60	
Ĺ	0.94	0.29	0.25	0.42	0.53	Biomass GS30
نم: بې		0.41	0.34	0.45	0.6	N content GS30
			0.36	0.29	0.33	# Tillers GS30
8 {}; }			\sim	-0.14	0.2	NDVI GS30
					0.78	Biomass GS60
						N content GS60
2 G (4 0 8 0 7	0 0	N 4 5 9 M	02020	2020	

