INTRODUCTION
This poster presents a cautionary tale of what can happen if past land use history and soil quality indicator assessment are not incorporated into wetland restoration protocols. In particular, “legacy P” derived from point and non-point sources in agricultural land uses is of concern in wetland restoration (Steinman & Ogdain, 2016; Sharpley et al., 2018). Legacy P may be temporarily stored and subsequently remobilized or recycled within wetlands, and wetlands may serve as a source of or sink for P, with residence times on the order of years, decades and centuries (Aldous et al., 2020).

Since 1998 we have monitored water quality at Prairie Wolf Slough Wetland Demonstration Project (PWS), a peri-urban restored wetland in north suburban Chicago (Figure 1). The restoration was undertaken to demonstrate the efficacy of restored wetlands in improving stormwater quality in the Chicago River watershed. The results of the first phase of this project were published in Montgomery & Eames (2008), who found that while PWS was effective in reducing concentrations and loadings of sah, DO, NO3-N, NH4-N, and SO4-S, total solids (TS) and total suspended solids (TSS), it exported P to the adjacent Chicago River. However, the authors did not investigate other potential sources and pathways of P into and out of the wetland, including legacy P or P inputs via atmospheric deposition. In addition, in 2004 the Illinois Department of Transportation widened Illinois Route 22 (IR-22), which forms the northern boundary of PWS, resulting in the hydraulic disconnection of a residential storm sewer sub-basin (sub-basin 5; Figure 2) that delivered runoff from residential land use impervious surfaces to PWS during high precipitation events.

Research Questions:
1. What impact did widening of IR-22 widening have on P dynamics?
2. What are other potential sources and pathways of P (e.g. including legacy P) into and out of PWS?

OBJECTIVES
1. Describe the spatial and temporal changes that have occurred in stormwater discharge and runoff from residential land use impervious surfaces to PWS during high precipitation events.
2. Describe the spatial and temporal changes that have occurred in stormwater discharge and runoff from residential land use impervious surfaces to PWS during high precipitation events.

RESULTS
Figure 7: Outlet SRP and TP concentrations are significantly greater than all other sampling locations. SRP and TP concentrations at PWS are similar to inlet, indicating the retention pond is filtering P-laden sediments. SRP and TP concentrations at marsh are both ~1.0 ppm EPA threshold for eutrophic conditions and 10x greater than other locations, indicating internal P cycling.

Figure 8: Outlet mean SRP was significantly greater than inlet mean SRP in comprehensive, pre-widening, and post-widening time periods. Mean SRP increased 189%, 192% and 188% between the inlet and outlet sites for the comprehensive, pre-widening and post-widening time periods, respectively. We hypothesized that excess stormwater and snowmelt runoff from the residential subdivision in sub-basin 5 contributed excess SRP into PWS (sub-basin 4). However, after sub-basin 5 was hydraulically disconnected from PWS during IR-22 road widening, post-widening outlet mean SRP concentration increased 182% from the pre-widening outlet concentration. This increase may indicate that the excess stormwater and snowmelt runoff generated from impervious surfaces in sub-basin 5 and delivered to PWS during the pre-widening period effectively diluted SRP concentrations at the outlet.

Figure 9: HRT = ~12 hours. 3,257,770 L were stored in the marsh (60% retention). 37 g of SRP was exported from the marsh in the Chicago River. For the period 22 April 2012 thru 10 May 2013 data not shown) 219 g of SRP was exported from PWS through the outlet to the Chicago River. During the same time period, we estimated that the inlet contributed only 6.4 kg. That accounts for less than 3% of the SRP loading to the river. In a subsequent study (data not shown) from 31 July to 18 November 2013, 85.7 kg of SRP was exported while only 1.8 kg or 2.1% was accounted for at the inlet.

Figure 10: Average flow rate increased 1.940%, between inlet and outlet. 862,000 L of stormwater were exported to the Chicago River due to increased flow contributions from sub-basins 1 and 2 (Figure 2) which deliver stormwater to a dry-bottom detention pond in sub-basin 2. Water from the detention pond flows through a swale that is confluent with the swale draining a wet bottom retention pond in sub-basin 3. SRP mass concentration increased 3,800%, between the inlet (0.45 kg) and outlet (17.5 kg).

Figure 11: Mean SRP in ~18 cm chamber is significantly greater than mean SRP in all other chambers. There is an upward flux (computed using Fick’s First Law) of SRP to water column, contributing as much as 2.74 kg y^-1 of SRP.

Figure 12: Benchmark studies show a positive correlation between water temperature and the release of SRP from cattail biomass. At typical summer water temperatures (27°C), the mean SRP release rate after five days was 217 mg kg^-1 of biomass, and 409 mg kg^-1 of biomass after six weeks. Mean summer SRP release after six weeks is 7.3X greater than mean winter SRP release.

Figure 13: Mean SRP in the cattail fringe was significantly greater than all other habitats. There was not significant difference in mean SRP between the marsh sediment and the unrooted (“analog”) site (Figure 3).

Figure 14: Using the average daily rates developed from our atmospheric deposition study (Shah, 2015), we estimated that the marsh covered by cattails could contribute 17.3 kg of SRP and the open water marsh another 9.2 kg. This suggests that as much as 26.5 kg of SRP or 12% of the exported (219 kg) could result from atmospheric deposition on the 3.4 ha marsh. Despite the subsequent study later in 2013, we estimated that 7.7 kg of exported SRP or 9% could be explained by atmospheric deposition.

DISCUSSION
Concentrations and mass loadings of stormwater P at the outlet were significantly higher than at the inlet for the 18 year duration of this study. Other sources and pathways of P into PWS include legacy P derived from pore water flux from marsh sediment, P release due to cattail biomass decomposition, P release resulting from wind-induced water motion and P sedimentation. The fact that there was no significant difference in P concentrations between the marsh sediments and the soils collected from the unrooted (“analog”) site, both of which had been farmed and probably received inputs of rock phosphate, suggests that most of the excess P into PWS came from various legacy P and atmospheric sources. Twenty years after restoration was completed, PWS remains a point source of P into the Chicago River. Understanding the link between wetland soil quality and water quality is an important consideration in selecting candidate sites for restoration. Detailed site history of a candidate restoration site should be conducted, and potential legacy P sources should be identified and quantified, particularly if water quality improvement is a prime goal. Finally, most importantly, post-restoration management practices must include long-term monitoring (5-10 years) of water and soil quality.

REFERENCES
1. Department of Environmental Science and Studies, DePaul University, Chicago, IL 60614
2. Department of Biology, Armstrong State University, Savannah, GA 31419

ACKNOWLEDGMENTS
We gratefully acknowledge the Lake County Forest Preserve District for granting permission to conduct this investigation. Initial funding for water quality monitoring was provided by the Friends of the Chicago River and U.S. Fish & Wildlife Service-Chicago Metro Office. Finally, we wish to thank the many undergraduate students in the Department of Environmental Science and Studies at DePaul University who have assisted us in conducting this investigation during the past 10 years.

Questions? Contact Dr. James Montgomery at montgomery@depaul.edu.