Laboratory of Soil Ecology and Microbiology

Gone with the Wind: Rethinking How Water-Filled Pore Space Affects Gaseous Nitrogen Production in Soil-Based Wastewater Treatment Faith L. Anderson^{1,2}, Jennifer A. Cooper^{1,3} and Jose A. Amador¹

Why do we need to re think this?

- A quarter of U.S. homes rely on onsite wastewater treatment systems (OWTS) to treat wastewater
- Treatment takes place as wastewater moves through drainfield soil
- $_{\odot}$ Zero to 30% of N in wastewater is removed in soil via microbial processes as N_2 and N_2O

What did we find?

- Conversion of ¹⁵NH₄ to N gases was generally highest at the lowest WFPS value for all water and soil types
- Production of N gases accounted for 4–6 % for DW and 1–2% for STE and SFE.

 N removal by microorganisms is affected by water-filled pore space (WFPS)

From: Linn, D. M., and J. W. Doran. 1984. Effect of water-filled por space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48:1267-1272.

- Current understanding of effects of WFPS on microbial N removal is based on long-term incubations using surface agricultural soils and clean, oxygenated water.
- But: the drainfield is installed in subsurface horizons; wastewater has high levels of inorganic N and organic C, and little or no dissolved O₂ (DO); water spends a short time in soil.
- Poor understanding of how WFPS affects N removal affects ground and surface water quality, public health.

We examined how WFPS affects N₂ & N₂O production in drainfield soils

- Production of ¹⁵N₂ was 50 to 100x that of ¹⁵N₂O at nearly all values of WFPS in B and C horizon soil for all water types.
- When normalized by the amount of substrate added, the effect of WFPS on ¹⁵N₂ and ¹⁵N₂O was greater at the lowest WFPS for all water types and soils tested.
- Production of ¹⁵N₂ varied linearly with ¹⁵N₂O for most water and soil types, suggesting strong coupling of processes.

How did we go about it?

NH_₄→¹⁵N

B or C

B or C

So, do we need to rethink this?
Yes. The response of N gas production in

- Used mesocosms to determine the short-term (1-h) response of N₂O and N₂ production to WFPS in B (silt loam) and C (very gravelly coarse sand) horizon soil.
- Used deionized water (DW), sand filter effluent (SFE) or septic tank effluent (STE) amended with ¹⁵NH₄ to adjust WFPS and measured ¹⁵N₂ and ¹⁵N₂O.
- Provide a range of concentrations of organic C, nutrients, dissolved O_2 and microorganisms.

Water type	DO	BOD	Total N	NH ₄	NO ₃
	(mg/L)				
Septic tank effluent	0	200	84	47	0
Sand-filter effluent	2	2	53	6	51
Deionized water	8	0	0	0	0

Why do we care?

- Numerical models of the fate of N in OWTS drainfields should reconsider moisturedependence of N removal.
- Contrary to current design guidelines, applying a lower volume of wastewater to soil – which results in a lower WFPS – may improve N removal efficiency.
- Sea level rise and increased precipitation due to climate change will affect WFPS and the ability to remove N in the soil.

- surface agricultural soil to WFPS does not represent what takes place in soil-based wastewater treatment.
- Microbial production of N₂ and N₂O in subsurface horizons happens quickly over a broad range of WFPS values, but especially at low WFPS.

B or C

¹Dept. of Natural Resources, University of Rhode Island, Kingston, RI; ²Currently at Program in Experimental and Molecular Medicine, Dartmouth University, Hanover, NH; ³Currently at Everglades Research and Education Center, University of Florida, Belle Glade, FL