

Nitrogen contribution from above and belowground biomass of forages to the subsequent potato crop

Jennifer Whittaker¹, Judith Nyiraneza¹, David Burton², Bernie Zebarth³ Charlottetown Research and Development Centre, AAFC, ² Dalhousie University, ³ Fredericton Research and Development Centre, AAFC

Soil N supply capacity can be enhanced by growing a legume that through biological N fixation increases N inputs or by growing a grass that have residual soil N scavenging ability. The N contribution of the above and belowground biomass (consisting of soil and roots) of different forages to the following crop still need elucidation. This study used ¹⁵N isotopic fertilizer in microplot cylinders to assess the fate of different labeled forage residue N from the above and belowground biomass to subsequent potato crops.

Objectives

- Use 98 % enriched ¹⁵N fertilizer applied to soil in microplots to trace N cycling in a grass (timothy, T), a legume (red clover, RC) or a mixture of both (M) and into subsequent potato crop by crop residue exchange technique (Figure 1).
- Assess the effects of forage and residue selection (above or belowground) on biomass accumulation, N uptake, and ¹⁵N partitioning in subsequent potato crop and soil.

Methodology

- 2013: Hollow cylinders (microplots) installed in field, forage crops established inside microplots.
- 2014 Spring: Equivalent of 20, 40 and 60 kg N ha⁻¹ of unlabeled (¹⁴NO₃¹⁴NH₄) or labeled 98 % enriched ¹⁵NO₃¹⁵NH₄ fertilizer added in RC, M and T respectively in designated cylinders.

- 2014 Fall: Crop Residue Exchange (Figure 1) occurred on 21 November 2014 to produce a total of 3 forage and 4 residue treatments with 4 reps (Fig 1).
- 2015 Spring: One potato plant was planted in each microplot.
- **2015 Fall: Potatoes were removed from field before** vine senescence and total plant biomass and N uptake was measured. ¹⁵N recovery was measured in potatoes and in soil after potato harvest.

Figure 1. Residue treatments after residue exchange for one forage treatment. A: AG – Labeled aboveground residues (whole forages); B: BG – Labeled roots and soil (whole forages); C: (Not a treatment) Forages grown for AG_{only} and BG_{root}; D: AG_{only} - Labeled aboveground residues only; E: BG_{root} - Labeled recovered roots only. Shaded areas indicate microplots with forages in 2014 before residue exchange.

Resilience Emerging from Scarcity and Abundance Crop Science Society of America Soil Science Society of America

Introduction

			Re	esults				
Table 1. Tota date in 2014.	l ¹⁵ N re Soil s	ecovery amples	in collected f were taken b	orage biomas efore crop res	s and soil or idue exchan	n each c ige.	ollection	
Treatment	Ab	ovegrou	Ind Biomass	Root Biomass	Soil 0-15	cm So	Soil 15-30 cm	
	Fir	st cut	Second cu	t				
				% ¹⁵ N				
RC	2	9.4 ^{b§}	2.20 ^b	9.57	45.9 ^a		17.4 ^a	
Μ	3	8.9 ^b	4.15 ^a	8.27	33.0 ^b		9.69 ^b	
Т	4	8.1 ^a	1.98 ^b	11.0	16.3 ^c		6.68 ^b	
Significance		*	*	NS	****		***	
§ values followed	by differ	ent letters	in the same treat	ment are statistica	lly different. ****	* <i>p</i> < 0.000 ⁻	1; *** <i>p</i> <	
0.001; * <i>p</i> < 0.01; *	<i>p</i> < 0.05	; NS, not s	ignificant					
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak	<i>p</i> < 0.05 alysis (alysis (alysis (alysis)	; NS, not s of Variar 15 from	ignificant nce (ANOVA) forage and r	for potato dry residue treatm	matter accu ents.	umulatio	on and	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment	<i>p</i> < 0.05 alysis o te in 20	; NS, not s of Variar 15 from	ignificant nce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatm ato Dry Matter root, vine)	matter accu ents. Tota	al N Upt	on and ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA	<i>p</i> < 0.05 alysis (alysis (alysi (alysi)) alysis (alysis)) alysis (alysis)) aly	; NS, not s of Variar 15 from	ignificant nce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine)	matter accu ents. Tota	al N Upt	on and ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F)	<i>p</i> < 0.05 alysis o e in 20	; NS, not s of Variar 15 from	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine)	matter accu ents. Tota	al N Upt	on and ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R)	<i>p</i> < 0.05	; NS, not s of Variar 15 from	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine) (matter accu ents. Tota	al N Upt	ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R	<i>p</i> < 0.05	; NS, not s of Variar 15 from	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine) (matter accu ents. Tota	al N Upt	ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slic	<i>p</i> < 0.05 alysis of the in 20 cing th	; NS, not s of Variar 15 from	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine) (**** NS *** n forage and re	matter accu ents. Tota	al N Upt	ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slic	p < 0.05 alysis of the in 20 cing th W	; NS, not s of Variar 15 from	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatment ato Dry Matter root, vine) (**** NS *** n forage and re er	matter accu ents. Tota g m ⁻²	al N Uptake	ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slice Treatment	p < 0.05 alysis of the in 20 Cing th W AG	; NS, not s of Variar 15 from e intera hole Pot BG	ignificant hce (ANOVA) forage and r Whole Pot (tuber,	for potato dry esidue treatm ato Dry Matter root, vine) (**** NS *** n forage and r er Groot AG	matter accu ents. Tota g m ⁻² esidue treatu Total N U BG	al N Upt **** **** **** ment. Uptake AG _{only}	ake BG _{root}	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slic Treatment	p < 0.05 alysis of the in 20 Cing th W AG	; NS, not s of Variar 15 from e intera hole Pot BG	ignificant hce (ANOVA) forage and r Whole Pot (tuber, ction betwee tato Dry Matter AG _{only} E	for potato dry esidue treatm ato Dry Matter root, vine) (**** NS *** n forage and r er Groot AG g m ⁻²	matter accu ents. Tota g m ⁻² esidue treatu Total N U BG	al N Upt **** **** **** ment. Uptake AG _{only}	ake	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slic Treatment	<i>p</i> < 0.05 alysis of e in 20 cing th G32 ^{a§}	; NS, not s of Variar 15 from e intera hole Pot BG 696 ^a	ignificant hce (ANOVA) forage and r Whole Pot (tuber, ction betwee tato Dry Matte AG _{only} E	for potato dry esidue treatman ato Dry Matter root, vine) (**** NS *** n forage and r er SG _{root} AG g m ⁻² 597 ^a 9.17 ^a	matter accu ents. Tota 3 m ⁻² esidue treatu Total N U BG	al N Upt **** **** **** ment. Uptake AG _{only} 7.19 ^a	ake BG _{root}	
0.001; * <i>p</i> < 0.01; * Table 2a. Ana total N uptak Treatment ANOVA Forage (F) Residue (R) F x R Table 2b. Slic Treatment	<i>p</i> < 0.05 alysis of e in 20 cing th G32 ^{a§} 678 ^a	; NS, not s of Variar 15 from e intera hole Pot BG 696 ^a 617 ^a	ignificant hce (ANOVA) forage and r Whole Pot (tuber, ction betwee tato Dry Matte AG _{only} E 554 ^a 473 ^a	for potato dry esidue treatman ato Dry Matter root, vine) **** NS *** n forage and re er SG _{root} AG g m ⁻² 597 ^a 9.17 ^a 474 ^b 11.1 ^a	matter accu ents. Tota g m ⁻² esidue treatu Total N U BG 10.5 ^a 10.6 ^a	al N Upt **** **** ment. Uptake AG _{only} 7.19 ^a 6.37 ^a	ake BG _{root}	

[§] values followed by different letters in the same column are statistically different. Table 3. Recovery of residual ¹⁵N from residues in forage and residue treatments within potato plant parts. Recovery of remaining ¹⁵N in soil after potato harvest in 2015.

Treatment	Level	Tuber	Vine	Root	Whole	Soil	Soil
				ποοι	Plant	0–15 cm	15–30 cm
				%	¹⁵ N		
Forage (F)	RC	1.82 ^a	1.56 ^a	0.10 ^a	3.48 ^a	13.5 ^a	3.58
	Μ	1.72 ^a	1.57 ^a	0.09 ^a	3.38 ^a	8.82 ^b	4.74
	Т	0.49 ^b	0.45 ^b	0.04 ^b	0.99 ^b	2.24^c	5.61
Residue (R)	AG	1.10	1.15 ^{ab}	0.06	2.31	5.16 ^b	1.49 ^b
	BG	1.33	1.48 ^a	0.09	2.90	20.0 ^a	14.8 ^a
	AG only	1.70	1.18 ^{ab}	0.07	2.95	6.09 ^b	1.84 ^b
	BG _{root}	1.25	0.96 ^b	0.08	2.29	1.45 ^b	0.47 ^b
ANOVA							
F		****	****	***	****	*	NS
R		NS	*	NS	NS	*	**
FxR		NS	NS	*	NS	NS	NS

³ values followed by different letters in the same treatment are statistically different. 0.001; ** *p* < 0.01; * *p* < 0.05; NS, not significant

Results

Comparable aboveground dry matter was obtained from RC and M treatments but was 46 and 51 % lower in T treatment than in RC and M respectively (Data not reported). Root biomass comprised 33 – 50 % of total forage biomass collected. In RC and M, the root N uptake comprised 18 to 28 % of the total forage N uptake respectively and 41 % in T (Data not reported).

Recovery of ¹⁵N fertilizer in forage crops ranged from 32 % to 50 % (RC < M <T) in aboveground biomass. There was no observed forage effect in ¹⁵N recovery in roots. Total ¹⁵N recovery in roots represented approximately 18 - 24 % of total plant ¹⁵N recovery (Table 1).

In all treatments except for BG_{root}, RC and M treatments had significantly higher whole potato dry matter and N accumulation than T. Total N uptake was proportional to the amount of residues incorporated from RC and M treatments (BG_{root} ≈ AG_{only} < BG ≈ AG); the reverse trend was observed for T (Table 2b).

Mean whole potato plant ¹⁵N recovery from labeled residue ranged from 0.99 – 3.48 %. Recovery was highest in RC and M treatments compared to T treatment and recovery from all residue treatments were comparable (Table 3).

 In 2015, the majority of residual ¹⁵N remained in the soil 0-30 cm and was highest in BG.

Conclusion

- Potato dry matter and N uptake values were comparable among R and M treatments and were higher than T treatment probably due to N assimilation and subsequent unavailability from timothy.
- Only a small fraction (< 5 %) of ¹⁵N from labeled whole potato crop. Above and belowground biomasses (recoverable roots) contributed equally to ¹⁵N recovery in potato plant parts. Low residual that mainly occur over-winter in Atlantic Canada.
- Despite potential avenue for N losses, the ¹⁵N from labeled residues found in the soil after potato harvest was higher in BG treatment than other residue treatments reflecting multiple ¹⁵N sources coming from residual ¹⁵N soil, from fine and coarse labeled roots.

Acknowledgements to Agriculture and Agri-Food Canada for funding. **Technical support provided by Irene Power, Sandy Jenkins, Harrington** farm crew and lab interns.

2016 Annual Meeting | Nov. 6-9 | Phoenix, AZ

forage residues were transferred to the subsequent ¹⁵N recovery may be the result of N leaching losses