
Soil hydraulic properties have a predominating impact on soil physical quality (SPQ) 
because they directly or indirectly control:

• storage of soil water and soil air
• infiltration and drainage
• nutrient leaching
• soil microbial dynamics and activity
• greenhouse gas (GHG) generation
• sequestration of soil organic carbon

Soil hydraulic properties are often better described using “bimodal” water release, 
θ(h), and hydraulic conductivity, K(h), functions which combine:

• large-pore “structure domain” θS(h) and KS(h)
• small-pore “matrix domain” θM(h) and KM(h)

Few studies have assessed the physical quality of soils with distinct structure and 
matrix domains

Objectives:
1) Show how closed-form van Genuchten (1980) θ(h) and K(h) functions might 

be fitted to bimodal θ(h) and K(h) data.

2) Use fitted bimodal θ(h) and K(h) functions to characterize the SPQ of soils 
with distinct structure and matrix domains. 
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Introduction

• Although the SPQ of bulk soil may be good, the SPQ of the structure and/or matrix 
domains may be limited.

• The structure domain can be droughty and potentially prone to drainage-induced 
leaching of nutrients.

• The matrix domain can be poorly aerated and potentially prone to GHG generation. 

• Maximizing the economic and environmental performance of field-crop production 
may require targeted improvement of structure or matrix SPQ.

Implications
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4. Field Capacity Water Content for Structure Domain (θSFC) and Matrix Domain 
(θMFC) (adapted from Assouline & Or, 2014):
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MFC ;

tFC =  3 days  =  specified time for gravity drainage from saturation

KSFC , KMFC = field capacity hydraulic conductivity for structure & matrix domains

z =  30 cm  =  specified primary crop rooting depth 

5. Plant-Available Air (AC) and Water (PAWC) Capacities for Structure Domain 
and Matrix Domain:

ACS = structure domain = P1 – θSFC  ;  ACM = matrix domain = P2 – θMFC

PAWCS = structure domain = θSFC – PWPS ;  PAWCM = matrix domain = θMFC – PWPM

Example Results

Fig. 1. Desorption curve   
data from packed soil 
aggregates plus fitted Eq. (1) 
delineating bulk soil, θB(h), 
matrix domain, θM(h), 
structure domain, θS(h), and 
residual domain, θR.  PM and 
PS are matrix domain and 
structure domain porosities, 
respectively. 0.0
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Fig. 2. Predicted pore size 
distributions (PSD) are based 
on Fig. 1 and Eq. (3).  The de
values at the matrix and 
structure domain peaks 
(modes) are determined 
using Eq. (4).

Fig. 3. Hydraulic 
conductivity data from 
packed soil aggregates plus 
Eq. (2) predictions for bulk 
soil, KB(h), matrix domain, 
KM(h), and structure domain, 
KS(h).
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Fig. 4 (packed aggregates). 
Structure and matrix domain 
porosities contribute about 
equally to bulk soil porosity.

Bulk soil field capacity water 
content determined largely 
by matrix domain. 

Fig. 5 (packed aggregates). 
Bulk soil has excellent air and 
water capacities: AC = 0.29 
m3 m-3 ; PAWC = 0.31 m3 m-3.

However:
Structure domain is severely 
water-limited, i.e. PAWC < 
0.10 m3 m-3. Matrix domain 
is severely aeration-limited, 
i.e. AC < 0.10 m3 m-3. 

Fig. 6 (packed aggregates). 
Bulk soil Ksat and KFC are 
controlled by structure 
domain Ksat and KFC, 
respectively.

Using the Meyer & Gee 
(1999) criteria, drainage at 
field capacity is “minor” in 
matrix domain (KFC = 3 x 10-7

cm s-1), but significant in 
structure domain (KFC = 3 x 
10-6 cm s-1). (1)

(2)

3. Bulk Soil Pore Size Distribution (PSD) Function, PB(h):

de =  G / h  =  equivalent pore diameter
G = proportionality  constant
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Relationships

1. Bulk Soil Water Release Curve, θB(h):
(adapted from McCoy & Stehouwer, 1998)
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i =  1  →  structure domain ;   i =  2  →  matrix domain

P1 =  structure domain porosity ;   P2 =  matrix domain porosity
PR =  residual (non-participating) porosity

PB =  bulk soil porosity  =  P1 + P2 + PR

  in
ii hA  1 ;     h =  tension head

αi , ni , mi  =  van Genuchten (1980) curve fitting parameters

2. Bulk Soil Hydraulic Conductivity Function, KB(h):
(adapted from Priesack & Durner, 2006)
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KBS =  bulk soil saturated hydraulic conductivity, Ksat (measured)

KMS =  matrix domain Ksat 

KSS =  structure domain Ksat =  KBS – KMS

i =  structure – matrix proportions
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Mualem (1976) “series-parallel” pore distribution model: 

P = 0.5  ;  q = 1  ;  V = 2

Burdine (1953) “parallel” pore distribution model:

P = 2  ;  q = 2  ;  V = 1
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