77-2 Effects of Nitrogen Fertilization and Thinning Treatments on Subsurface Soil Carbon and Nitrogen.

See more from this Division: SSSA Division: Soil and Water Management and Conservation
See more from this Session: Soil Management Impacts on Soil Properties and Soil C and N Dynamics Oral I (includes student competition)

Monday, November 7, 2016: 10:25 AM
Phoenix Convention Center North, Room 231 A

Cole D. Gross1, Jason James2 and Rob Harrison2, (1)Box 352100, University of Washington, Seattle, WA
(2)School of Environmental and Forest Sciences, University of Washington, Seattle, WA
Abstract:
Increases in intensively managed forest plantations have caused concern for the long-term productivity and sustainability of these stands, as decreased organic matter retention and shorter rotations can substantially impact soil nutrition both in the short- and long-term. This study aims to provide data for regional responses of soil carbon (C) and nitrogen (N) by depth to fertilization and thinning treatments. Soil was sampled at an intensively managed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation in northwestern Oregon, USA. Nine 0.2-ha plots were sampled with at least three pits per plot. Management regimes included no treatment (control), fertilization (F+), minimal thinning (mT), repeated thinning (rT), and combination treatments (mTF+ and rTF+). Fertilized plots received a total of 1120 kg N ha-1 as urea over 16 years. Bulk density and chemical analysis samples were taken in the middle of succeeding soil layers at depths of 0.1, 0.2, 0.5, 1.0, and 1.5 m. Forest floor samples were collected from a randomly placed quadrat. Preliminary results show an increase in total soil C and N of 113 and 106%, respectively, on the mTF+ plot compared to a control plot. The subsoil, defined here as below 0.2 m, contained over 50% of both soil C and N on the mTF+ plot and experienced greater C and N increases than the surface soil following treatment. This study demonstrates that forest management practices over a relatively short time span (<30 years) can significantly alter subsoil, which comprises a substantial portion of biologically available C and N in terrestrial ecosystems. Subsoil processes are critical to our understanding of changes in soil quality and our ability to accurately assess changes in soil C and N reservoirs.

See more from this Division: SSSA Division: Soil and Water Management and Conservation
See more from this Session: Soil Management Impacts on Soil Properties and Soil C and N Dynamics Oral I (includes student competition)