SOIL CAND N CYCLING UNDER REDUCED-TILLAGE AND COVER CROPPING IN THE SOUTHERN HIGH PLAINS AGROECOSYSTEMS

		INE
Ba	ackground	Resu
*	Cover crops can benefit agroecosystems by reducing soil erosion, improving soil quality, and conserving soil water in dry areas.	n ⁻² hr ⁻¹) - 06 - 02 hr ⁻¹)
*	Effects of cover cropping and other conservation practices has not been studied extensively in a dry, hot agroecosystems of the southern High Plains.	emissions (kg n - 00 (kg n - 30 - - 30 -
0	bjectives	$\begin{array}{c} 0\\ 1\\ 0\\ \end{array}$
*	To evaluate soil organic matter dynamics and soil CO_2 emissions in (a) a limited- irrigated winter wheat-sorghum-fallow, and (b) a corn-sorghum rotation with cover cropping and diverse tillage systems	U 10 - 0 + 15-A Fig. 1. effects
	aterials and Methods	POC,
⊥ ♥」 ◆	Study Site: NMSU Agricultural Science	90
••••	<i>Soil type:</i> Olton clay loam ((Fine, mixed, superactive, thermic Aridic Paleustolls)	$m_{-1}^{2} hr^{-1}$
**	 <i>Cropping system:</i> <i>Study 1:</i> Winter wheat-sorghum-fallow under limited-irrigation and no-tillage management. 	- 05 C - 05 C - 01 -
	Study 2: Corn-sorghum rotation under dryland condition and strip-tillage and no-tillage management.	-10 + 90 7
••••	Experimental design and treatments:	-70
	Randomized complete block design with split	-2 hr
	 Study 1 treatments: Fallow (F) and Pea (P), Oat (O), Canola (C), Pea+Oat (PO), Pea+Canola (PC), Pea+Oat+Canola (POC), and six species mixture (Canola, Pea, Oat, Barley, Vetch, and Earners Padiah (SCM) as sever even treatments 	- 02 m - 05 C (kg m - 01 CO - 01 CO
	in a winter wheat-sorghum-fallow rotation.	-10 + 15-A
	Study 2 treatments: Conventional tillage, strip- tillage, and no-tillage with and without cover cropping in a corn-sorghum rotation.	Fig. 2. I in a dry
*	Observations: Weekly CO_2 emissions, soil and air temperature, soil water content, soil organic matter pools, nutrients, weed suppression, and crop yields of the following winter wheat and sorghum.	e CO ₂ -C emissions (kg m ⁻² hr ⁻¹)
		Average

and dryland corn-sorghum rotation (May-September 2017).

Rajan Ghimire, Binod Ghimire, Vesh B. Thapa, and Abdel Mesbah New Mexico State University, Agricultural Science Center, Clovis, NM

Effects of cover cropping on soil CO_2 -C emissions during cover crops growth, and residual after termination. F, fallow, P, pea, O, oat, C, canola, PO, pea and oat, PC, pea and canola, pea, oat and canola, SSM, six species mixture of POC, barley, hairy vetch, and forage radish.

Effects of tillage systems on soil CO_2 -C emissions during corn and sorghum growing season and corn-sorghum rotation. CT, conventional tillage, ST, strip tillage, NT, no-tillage.

Table 1. Available nitrogen
mineralizable N (PMN) and
cover crop termination in a
wheat-sorghum-fallow.

Treatment	Available N (mg/kg)	PMN (mg/kg)	PMC (mg/kg)
F	7.83a	4.85a	109.1a
Р	3.53b	4.20a	90.8ab
Ο	2.71b	3.54a	84.6b
С	3.08b	3.68a	100.7a
РО	3.22b	2.11a	84.5b
PC	2.82b	4.52a	104.8a
POC	2.44b	3.37a	97.5ab
SSM	3.44b	2.22a	81.4b

Table 2. Available N, potentially mineralizable N
 (PMN) and C (PMC) at the time of cover crop termination in a dryland corn-sorghum rotation.

Cropping	Cover	Available N	PMN	PMC		
system*	crops	(mg/kg)	(mg/kg)	(mg/kg)		
NTC	No	10.1d	14.5de	70.3c		
	Yes	6.97d	10.1d	109b		
STC	No	19.7c	26.9cd	115b		
	Yes	66.9b	53.4b	121b		
NTS	No	10.2d	17.6d	92.4bc		
	Yes	47.8b	39.4c	115b		
STS	No	31.8c	52.2b	64.6c		
	Yes	130a	82.5a	86.5c		
CTC	No	12.0d	21.0d	182a		

*NTC and NTS represent no-till corn and sorghum, STC and STS represent strip-till corn and sorghum, and CTC is conventional tillage corn.

Discussion and Conclusions

- Greater CO_2 emissions in cover crop plots than these practices.
- Available N and PMN increased and PMC • than in a conventional system.
- their effects on soil C dynamics and nutrient cycling.
- Long-term monitoring will further our ••• understanding of the effects of conservation systems on soil health and agroecosystem resilience in the semiarid drylands.

For more information Email: rghimire@nmsu.edu

(N), potentially l C (PMC) at the time of limited-irrigation winter

fallow plots in a limited-irrigation winter wheatsorghum-fallow, and strip-tillage sorghum plots than other plots in a dryland corn-sorghum rotation suggest improvements in microbial activity under

decreased in strip tillage and no-tillage systems Reduced-tillage systems and cover cropping reveal the potentials of improving soil quality through

