Fertilizer Potassium Recovery Efficiency By Irrigated Soybeans

M.D. Coffin, N.A. Slaton, T.L. Roberts, and R. DeLong

Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR

Summary Statement: Irrigated soybean [Glycine max (L.) Merr.] recovery of the fertilizer K ranged from 61 to 80% from preplant thru the R5 stage applications at one site and 68 to 100% from preplant thru R3 stage applications at a second site. Surface-applied muriate of potash is efficiently recovered by narrow row, irrigated soybeans during vegetative and reproductive growth and can help correct K deficiency.

INTRODUCTION

- Irrigated soybean grown on silt loam soils in Arkansas typically respond to K fertilization. Limited research has been conducted to determine how granular fertilizer-K application time influences the yield of soybean. Knowledge of soybean yield response and uptake of K as affected by application time would be beneficial for 'rescuing' K deficient soybean or managing fertilizer inputs.
- The literature contains few examples describing soybean yield response to in-season K fertilization.

FERTILIZER-K APPLICATION TIMES, R2 LEAF-K CONCENTRATION, AND YIELD RESPONSE TO FERTILIZER-K

GRAIN YIELD

- Grain yield for soybean grown on the Calloway soil is not reported due to severe lodging.
- Grain yield was significantly increased on the Calhoun soil by K fertilization. Yields of soybean receiving 112 kg K ha⁻¹ preplant thru the R2 stage produced 4302-4323 kg ha⁻¹, which was equivalent to 90% of maximum yield produced by soybean

Dry Matter

- Plant biomass was not affected by K application time on the Calloway soil (Table 1).
- For the Calhoun soil, dry matter accumulation declined linearly as K application was delayed (Table 1). The reduced biomass of soybean receiving midto late-season K may have contributed to their greater numerical K concentrations

CONCLUSIONS

- Fertilizer K applied to irrigated soybean grown on K-deficient soil is recovered very efficiently (60-80%) when applied preplant or during reproductive growth.
- Potassium-deficient soybean fertilized with granular K after the onset of pod development (R3 stage) may experience biomass and yield loss compared to soybean receiving K fertilizer from before planting to early reproductive growth.

OBJECTIVES

To evaluate irrigated soybean recovery of fertilizer K applied to the soil surface at different times during the growing season on K-deficient silt loam soils.

Hypothesis

Uptake and recovery of fertilizer K will decrease as granular K fertilizer application time is delayed through reproductive growth on soils that respond positively to K fertilization.

MATERIALS AND METHODS

- ***** 2016 Trial, Calloway soil
 - \succ Calloway silt loam (pH = 7.6)
 - Pioneer 47T36R seeded 7 May (38-cm wide rows)
 - > 64 (dry) and 52 (moist) mg Mehlich-3 K kg⁻¹ (0-10 cm)
 - 112 kg K ha⁻¹ as muriate of potash (500 g K kg⁻¹) applied four times during the season with time expressed as days after planting (DAP).
- Preplant K was applied 7 May (0 DAP) and no fertilizer-K was labeled as harvest application (138 DAP, Table 1)
 2016 Trial, Calhoun soil

receiving 168 kg K ha⁻¹. Soybean receiving K at the R5 stage (3676 kg ha⁻¹) or no fertilizer-K (2839 kg ha⁻¹) produced significantly lower yields than soybean fertilized with K before R2 stage.

WHOLE PLANT-K CONCENTRATION

- Soybean receiving K, at each location and regardless of K application time, had greater plant-K concentrations than soybean receiving no fertilizer K (Table 1).
- Whole-plant K concentration at both sites was numerically greatest when K was applied at the R2-R3 stage.

during late reproductive growth.

K Content and Recovery

- The lowest K content occurred for soybean grown with no fertilizer K (Table 1).
- On the Calloway soil, severe lodging (before sampling) may have caused variability in biomass and K uptake.
- Despite differences in biomass and plant-K concentrations, total K uptake and fertilizer recovery were not different among K application times on the Calhoun soil (Table 1). For both soils, the highest fertilizer-K recovery percentage occurred for K applied during the R2-R3 stage.
- Agronomic yield increases from lateseason K fertilization are possible..
- Incorporation of fertilizer K with irrigation water and the shallow root system of soybean grown on these alluvial soils likely contribute to the rapid and efficient uptake of fertilizer K.

Upcoming Results

Two additional sites were established in 2017 and results will be reported at a later date. This project is also evaluating objectives related to K application time.

Table 1. Dates of application, soybean growth stage, whole plant-K concentration, dry matter, K content and fertilizer recovery as calculated by the difference method for two field trials conducted in 2016.

Soil	DAP†	Rate	K Applied	Stage	Whole Plant K	Dry Matter	K Content	Recovery			
	d	kg K ha ⁻¹	d-mo		%K	kg ha ⁻¹	kg ha ⁻¹	%			
Calloway	0	112	7 May	Preplant	1.81 ab	11,506 a	209 a	102 a			
	37	112	14 Jun	V4	1.60 b	10,713 a	171 b	68 b			
	64	112	11 July	R3	1.97 a	10,690 a	209 a	102 a			
	86	112	3 Aug	R5	1.34 c	10,270 a	137 c	38 c			
	138	0			0.99 d	9,607 a	95 d				
				Pr > F	< 0.0001	0.5509	< 0.0001	0.0068			
Calhoun	0	112	5 May	Preplant	1.16 ab	12,123 ab	141 a	75 a			
	39	112	14 Jun	V6	1.30 ab	10,853 ab	142 a	76 a			
	66	112	11 July	R2	1.44 a	9,952 b	146 a	80 a			
	88	112	3 Aug	R5	1.31 ab	9,578 bc	125 a	61 a			
	140	0			0.69 c	8,204 c	56 b				
				Pr > F	0.0059	0.0105	0.0044	0.7662			
† DAP, days after planting											

- \succ Calhoun silt loam (pH = 8.1)
- Armor 47-R70 seeded 5 May (38-cm wide rows)
- ➤ 46 (dry) and 23 (moist) mg Mehlich-3 K kg⁻¹ (0-10 cm)
- 112 kg fertilizer-K K ha⁻¹ four times during the season with time expressed as DAP
- Preplant K was applied 5 May (0 DAP) and no fertilizer-K was labeled as harvest application (140 DAP, Table 1)

K Uptake and Recovery

- A 1-m long section of soybean plants from the second row was flagged during vegetative growth, sampled, cut at the soil surface, and dried for biomass, and analyzed for K concentration.
- Fertilizer K Recovery Efficiency (FKRE) was calculated using the difference method.
- **ANOVA and Regression Across Application Times**

	-	\sim \sim	~ /	

ACKNOWLEDGMENTS Research was funded by the Arkansas Soybean Checkoff Program, The Mosaic Company, Fertilizer

REFERENCES

Nelson, K.A., P.P. Motavalli, and M. Nathan. 2005. Response of no-till soybean [*Glycine max* (L.) Merr.] to timing of preplant and foliar potassium applications in a claypan soil. Agron. J. 97:832– 838. doi:10.2134/agronj2004.0241
Gill, D.W., and E.J. Kamprath. 1990. Potassium uptake and recovery by an upland rice-soybean rotatoin on an Oxisol. Agron. J. 82:329-333. doi:10.2134/agronj1990.00021962008200020031x

ANOVA was performed using SAS v9.4 with K treatment as a fixed effect and block as a random effect.

Randomized complete block design with five blocks.

➤ Differences were interpreted as significant when Pr≤0.10 using LSD means comparison.

Tonnage Fees, and the University of Arkansas System

