Evaluation of a Novel Optical Trapezoid Model for Estimation of Large-Scale Root Zone Soil Moisture Based on MODIS Satellite Observations and Reference Cosmic-Ray Measurements

Ebrahim Babaeian¹, Morteza Sadeghi², Scott B. Jones², and Markus Tuller¹ ¹ University of Arizona, Department of Soil, Water and Environmental Science, Tucson, AZ ²Utah State University, Department of Plants, Soils and Climate, Logan, UT

Background

- o Recently, Sadeghi et al. (2017) proposed a physical "optical trapezoid model" (OPTRAM) for remote sensing of soil moisture (SM).
- o OPTRAM is based on the pixel distribution within the shortwave infrared transformed reflectance (STR)-normalized difference vegetation index (NDVI) space, defined as:

Satellite data

- **MODIS**: Long-term land surface reflectance products (MOD09A1, 500m, 8-day) from 2001 to 2017 were used. Bands 1 (Red), 2 (NIR) and 7 (SWIR) were utilized to define STR-NDVI space.
- **SMAP** level-3 surface soil moisture product (L3_SM_P, descending 6:00 a.m.; 36 km; daily)
- **ASCAT** soil moisture product (EUMETSAT H109, H110; 12.5 km; daily)

Results - Continued

- o Scatterplots comparing rescaled estimated soil moisture (OPTRAM) and CRNP based measurements for the five selected sites indicate a good performance of OPRAM.
- o The accuracy of OPTRAM was different for the four selected sites with a mean RMSE 0.07 cm³ cm⁻³ (see the Table), which is reasonable for the optical domain

- Water-stressed vegetation
- SMOS level-3 soil moisture product (Version 3.0, 6:00 a.m.; 25 km, daily)

Bias reduction and CDF Matching

- o The Cumulative Distribution Function (CDF) matching method has been recommended for reducing systematic biases between two datasets, e.g., satellite-based estimates and in situ measurements.
- o A simple strategy (Reichle and Koster, 2004) was applied to match the CDF of estimated soil moisture to that of the in situ CRNP observations based on a transformation to consistent normal deviates

0.0 🖊 🏧		• 1	1	T	<u> </u>
0.0	0.1	0.2	0.3	0.4	0.5
	OPTF	RAM soil	moistur	e (cm ³ c	:m ⁻³)

Metrics	Arizona (Lucky Hills)	Arizona (Kendal)	California (Tonzi Ranch)	Idaho (Reynolds Creek)	Georgia (JERC)
R	0.32	0.36	0.46	0.70	0.10
RMSE	0.065	0.072	0.085	0.083	0.050
Bias	-0.015	-0.036	0.012	0.011	-0.007
ubRMSE	0.0638	0.0624	0.0848	0.0822	0.0501

o OPTRAM yields SM dynamics similar to those of CRNPs and microwave satellites during 2015 to 2017.

- The advantage of the STR- θ space over the conventional triangle/trapezoid approach (LST- θ space) (Carlson et al., 1994) is that: (1) it only requires optical data; and (2) it can be universally parameterized for a given location because $STR-\theta$ is not affected by ambient atmospheric factors.
- However, the STR- θ space is sensitive to oversaturated pixels (due to ponding water) and hence occasionally yields W>1 (*Sadeghi et al., 2017*)
- To solve this issue and to obtain a robust model parameterization, we used long-term MODIS data and evaluated OPTRAM across regions with various climates, landcovers, and soil types for estimation of SM.
- o Cosmic-ray neutron probe (CRNP) observations as well as satellite soil moisture products including SMAP, SMOS, and ASCAT were used to evaluate OPTRAM's accuracy. CRNPs exhibit a volume of influence similar to the size of a MODIS pixel.

Methodology

 $CDF_{ground}(x') = CDF_{satellite}(x)$ Results **Model Parametrization** o A nearly trapezoidal shape is formed for all four watersheds.

o A universal parametrization with long-term MODIS data was performed to derive dry and wet edge parameters. The figure below depicts the obtained STR- θ spaces and optimized edges.

Test Regions

o 4 Watersheds in the U.S. with different climates, land covers, soil types were selected.

Ground-based soil moisture

- Cosmic-ray neutron probe observations (CRNP) were collected from the Lucky Hills and Kendal sites (Arizona), Tonzi Ranch (California), Reynolds Creek (Idaho), and JERC (Georgia) from 2011 to 2017.
- The Franz et al. (2013) framework was used to correct soil moisture (θ_{v}) for all hydrogen sources. i.e., lattice water (θ_{lw}), atmospheric water vapor, and soil organic matter water (θ_{soceq}).

 $-0.115 - \theta_{lw} - \theta_{soc_{aa}} \left| \rho_{l} \right|$ |-0.372|

Lucky Hills

CDF Matching

• CDFs based on CRNPs and the original and rescaled soil moisture estimates from OPTRAM, SMAP, SMOS, and ASCAT for Kendal CRNP site (AZ) are depicted as an example below.

Conclusion

- The obtained results indicate reasonable accuracy of OPTRAM across regions with different climates, land covers, and soil types for large-scale estimation of soil moisture.
- OPTRAM yields similar SM trends as SMAP, SMOS, and ASCAT soil moisture products.
- CRNP observations could be an option to fill the scale gap between point measurements and satellite-based estimations of soil moisture.

Carlson, T.N., Gillies, R.R., Eileen, M.P. 1994. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remot. Sens, Rev. 9(1-2), 161-173. Franz, T.E., Zreda, M., Rosolem, R., Ferre, T.P.A. 2013. A universal calibration function for determination of soil moisture with

cosmic-ray neutrons. Hydrol. Earth Syst. Sci., 17, 453-460.

Reichle, R.H., Koster, R.D. 2004. Bias reduction in short records of satellite soil moisture. Geo. Res. Let. 31.

Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B. 2017. The optical trapezoid model: a novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 198, 52-68.

> The authors gratefully acknowledge support from the National Science Foundation (NSF) under grant No. 1521469.