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Motivation: Environmental Impacts of Fe Cycling

Background: Biotic and Abiotic Fe-oxide Reduction

Objectives

Ø  The Fe biogeochemical cycle affects carbon cycling, energy flow, and the 
mobility of nutrients and contaminants1, 2, 3

Ø  The chemistry of environmental bacteriogenic Fe-oxides (EBIOS) 
biomineralized at circumneutral conditions in streams and soils is an 
important link in this larger cycle

Ø  Fe can be oxidized and reduced abiotically, but also biotically by Fe-
oxidizing and reducing bacteria4

Ø  The dominant mechanism for the circumneutral reduction of EBIOS is 
only partially understood

Ø  Determine the plausibility of biotic and abiotic mechanisms for EBIOS 
reduction

Ø  Track kinetics of Fe(II) formation from EBIOS and synthetic two-line 
ferrihydrite (2LFh) 

Ø  Identify potential phase changes during EBIOS reduction
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Ø  While extent of EBIOS reduction is slightly greater under anoxic 
conditions, atmosphere type did not have a large influence on reduction 
rates

Ø  The reduction of EBIOS at circumneutral pH is mainly abiotic, since 
azide did not result in significant changes in reduction

Ø  Small increases in reduction in the presence of azide may indicate 
reduced activity of Fe-oxidizing bacteria

Hypothesis: EBIOS reduction is abiotic and driven by reactions with 
organic matter present in the biofilms rather than by microbial 
processes

Ongoing Work
Ø  EBIOS and 2LFh incubations without the trapping agent 1,10 

phenanthroline, to characterize the build-up of Fe(II) in solution under 
oxic and anoxic conditions

Ø  2LFh incubations with ascorbate to verify plausibility of reduction via 
reactions with organic matter

Experiment: EBIOS Reduction Incubations
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Ø  EBIOS biofilms and stream water samples collected from Walnut Creek 
and New Hope Creek in Raleigh

Ø  1,10 phenanthroline: Fe(II) trapping agent
Ø  Sodium azide: microbial metabolism inhibitor

EBIOS forming in Walnut Creek, Raleigh NC
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Shades of red in solutions after 
incubation indicate different 
concentrations of Fe(II) – 

phenanthroline complexes

Ø  Fe(II) concentrations 
equivalent to total Fe 
concentrations for EBIOS

Ø Possible correlation between 
azide and higher Fe(II)

Ø Minimal 2LFh reduction 
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Error bars represent analytical error, estimated as 7%

XRD: Potential Phase Changes?
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Reduction 
Mechanism Reference

EBIOS 
(average) 1.65E-10 7.41E-11 –  This study

2-Line 
Ferrihydrite 4.24E-10 –    Microbial  Roden and 

Zachara (1996)5

2-Line 
Ferrihydrite 1.19E-10 –   Microbial  Roden (2003)6


