Evapotranspiration of Bell Pepper Grown with Cloud-Based Fertigation in Greenhouse

OYuki Ito^{1*}, Hiroshi Takesako², Kiyoshi Ozawa², Eiji Kita³, Muneo Kanno⁴, and Kosuke Noborio⁵ ¹Graduate School of Agriculture, Meiji University, ²Kurokawa Field Science Center, Meiji University, ³Routrek Networks Inc., ⁴ NPO Resurrection of Fukushima, ⁵ School of Agriculture, Meiji University *yana1002gawa@yahoo.co.jp

Introduction

A fertile surface layer of farmland was decontaminated and replaced by non-fertile soil in Fukushima since the accident of Fukushima Daiichi Nuclear Power Plant in 2011. We reported that liquid fertilizer was applied suitably as a result of the evaluation of changes in the volumetric water content in soil where was conducted a commercially-available cloudbased fertigation system (CBFS). In this study, amount of irrigated water of bell pepper growth with CBFS were evaluated with the evapotranspiration, stem flow, and the volumetric water content.

Results and discussion

<u>ET_p vs F_{sm}</u>

- Trend of ET_p and F_{sm} agreed well with photon flux (Fig. 1).
- ET_p and F_{sm} had logarithmic relationship and were separated according to eq. (2) (Fig. 2). $P_t > 100 \text{ or } (P_{t-1} - P_t > 40 \text{ and } P_{t-1} > 89)$ (2)

P_t and P_{t-1} are photon flux at t and t-1, respectively.

Materials and methods

Experimental site: Dry field at greenhouse in litate village, Fukushima in northern Japan Experimental period: 9 June to 10 August, 2017 Soil texture: Sandy clay loam (sand: silt: clay= 60: 25: 15) Fertigation system: ZeRo. agri (Routrek Networks Inc., Japan) Dripline: Uniram 17 (NETAFIM, Israel) Grown crop: Bell pepper

Evapotranspiration (*ET_p*)

Penman-Monteith method (Campbell, 1985)

Air temperature, relative humidity, wind velocity, net radiation at z=2 m and soil heat flux

Effective area

- θ_w was high underneath the emitter (Fig. 3).
- θ_w underneath bell pepper was low: consumed soil water underneath itself(Fig. 3).
- *r_e* around bell pepper based on *ET_p* and eq. (1) were whole day: 210.96 mm, satisfied eq.
 (2): 189.27 mm, and not satisfied eq. (2): 380.90mm (Fig. 4).
- According to eq. (2), ET_p and F_{sl} agreed well (Fig. 5).
- r_e based on distribution of θ_w is smaller than r_e based on ET_p and F_{sm} .
- Penman-Monteith method is applicable in a green house.

ET_p vs irrigated water (Fig. 6)

 ET_p and irrigated water agreed well after 20 June.

at 5 cm below the soil surface were measured.

Volumetric water content (θ_w)

 $\theta_{\rm w} = 4.53 \times 10^{-2} + 2.31 \times 10^{-2} \varepsilon_b - 4.00 \times 10^{-4} \varepsilon_b^2$

ε_b is dielectric permittivity.

Dielectric permittivity: Time Domain Reflectometry(TDR)

Stem flow (*F_{sm}* and *F_{sl}*) Stem flow gauge (Sakuratani, 1981)

Stem flow was measured from 6 to 8 August. stem flow by length F_{sl} (mm 30 min⁻¹) was given:

 $F_{sl} = \frac{F_{sm}}{\rho_w \pi r_e^2}$

 F_{sm} (g 30 min⁻¹) which was measured is stem flow by mass, ρ_w (=10⁻³ g mm⁻³) is density of liquid water, and r_e (mm) is effective radius.

(1)

ZeRo. agri

Since vegetation did not sufficiently cover, ET_p was not available before 20 June.

We evaluated the irrigated water with CBFS. Penman-Monteith method is applicable in a green house. This cloud-based fertigation system could irrigate suitable amount of liquid fertilizer after expected required water uptake of bell pepper.

Reference

Campbell G. S. (1985): Soil physics with BASIC. Elsevier, NY, USA, pp.150. Sakuratani T. (1981): A heat balance method for measuring water flux in the stem of intact plants. J. Agr. Met., 37(1): 9-17

Acknowledgement

This research was partly supported by the 2017 Promoting Education and Research Fund of Meiji University, Japan.

