

Biological N₂ fixation, nodulation and N accumulation in pulse crops on the semiarid Canadian prairie

Zakir Hossain¹, Xiaoyu Wang², Chantal Hamel³, Yantai Gan¹

Agriculture and Agri-Food Canada, Research and development Centre, ¹Swift Current, SK, S9H 3X2; ²Ottawa, ON, K1A 0C6; ³Quebec, QC, G1V 2J3

Introduction

Grain legumes are a group of crops grown worldwide primarily for their protein-rich seeds that are used as human food, animal feeds, or in industrial products. They also lay a significant role in nitrogen cycling by fixing atmospheric N_2 through biological nitrogen fixation (BNF). BNF efficiency is reported to vary among pulse species and cultivars but information is scarce in the Canadian prairie growth environment.

Materials & methods

A 3-year field study was conducted at the Agriculture and Agri-Food Canada (AAFC) Research farm, Swift Current, Saskatchewan (50°25´N, 107°44´W) in 2008, 2009 and 2010 to quantify the BNF ability and related traits, and the effect of BNF on crop yield in chickpea (*Cicer arietinum* L.), dry bean (*Phaseolus vulgaris* L.), faba bean (*Vicia faba* L.), field pea (*Pisum sativum* L.) and lentil (*Lens culinaris* Medik.). In each plot, the number of nodules per plant was counted at the early- and later-flowering stages.

- Both seed and straw N accumulation varied significantly over growing seasons and were higher in 2010 (data now shown).
- Seed N content was highest in field pea and faba bean, while straw N content was highest in faba bean (data not shown).

Table 1 Nodulation and N₂ fixation in different pulse species

Year	Chickpea	Dry bean	Faba bean	Field pea	Lentil
Early flower n	odule number (p	lant ⁻¹)			
2008	25.9 ^a	0.1^{b}	35.2 ^a	28.2^{a}	21.7 ^a
2009	18.8	8.3	8.4	14.8	12.0
2010	37.9 ^b	4.3 ^d	50.3 ^a	40.7^{b}	24.0 ^c
Early flower n	odule weight (m	g plant ⁻¹)			
2008	118.0 ^a	1.0^{b}	80.0^{a}	100.0 ^a	14.0^{b}
2009	59.0	18.0	29.0	54.0	42.0
2010	122.0 ^a	3.0 ^c	44.0 ^{bc}	63.0 ^b	$12.0^{\rm c}$
Late flower no	odule number (pl	ant ⁻¹)			
2008	36.7 ^a	0.9^{b}	22.0^{a}	28.1^{a}	21.3 ^{ab}
2009	15.4	7.3	7.0	13.5	10.6
Late flower no	odule weight (mg	plant ⁻¹)			
2008	203.0 ^a	16.0 ^c	90.0 ^{bc}	157.0 ^{ab}	18.0^{c}
2009	80.0	20.0	29.0	64.0	51.0
N fixed (kg ha	1 ¹)				
2008	30.6 ^c	0.8^{d}	49.5 ^{ab}	58.3 ^a	38.2 ^{bc}
2009	21.0 ^{bc}	15.4 ^c	$45.4^{\rm a}$	36.6 ^{ab}	23.0 ^{bc}
2010	103.6 ^a	11.9 ^c	107.7 ^a	68.5 ^b	86.8 ^{ab}

Fig. 1 Digging roots for nodule measurements from different pulse crops

Results & discussion

- ➢ BNF varied according to growing season, and pulses had a higher BNF in the wetter 2010 than the drier 2009 (Table 1).
- In 2010, faba bean and chickpea had the highest BNF at 106 kg N ha⁻¹, followed by lentil, field pea, and dry bean at 87, 69, and 12 kg N ha⁻¹, respectively (Table 1).
- Across years, field pea had the most stable BNF ability and seed yield. There are large differences in BNF and yield among

Conclusions

cultivars within a species and the magnitude of the difference varied with years (Fig. 2).

- > Most pulse crops had a higher number of nodules at the early
- flowering stage, but the nodule weight was higher at late flowering stage (Table 1).
- At the late flowering stage, chickpea had the highest number of nodules in 2008 (36.7 plant⁻¹) (Table 1).

Large genetic variability in BNF, N accumulation and yield suggest the possibility that pulse cultivars with a higher N_2 -fixing ability and seed yield can be developed through selection of the N_2 -fixing traits.

We acknowledge Lee Poppy and all other technicians for field plot management, and the financial support from Agriculture and Agri-Food Canada and Saskatchewan Pulse Growers.