Application of Shortwave Infrared Imaging for Estimation of Soil Hydraulic Properties
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Soil hydraulic properties (i.e., soil water characteristic and hydraulic « Water imbibition was described based on Richards’ equation SWIR imaging-based surface soil water dynamics
conductivity) are key for modeling water flow and transport of solutes, heat and considering van Genuchten-Mualem hydraulic functions (van . _ 360 s 1200 5 3000 5 6000 5 12000 5
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equation with HYDRUS 2D (Simiinek et al., 2008). ree observation hodes focated al = 1.2, 2.9, and 3. /5 th. ' Soil Water Content Simulations
Suetuea deppes e A reasonable agreement iIs observed between
Estimation of (h) and K(h) the Imaging-based estimated and HYDRUS-
Met h O d S _ _ simulated water contents with respect to
* The estimated (converted) drying 6(h) and distance from the emitter, particular for fine-
1. Experiments y wetting K(h) (1.e., K,) showed reasonable textured soils where RMSE ranges between
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dynamics and thereby retrieving soil hydraulic properties. Search space and initial values for the van Genuchten (1980)

» The nonlinear function was fitted to 6/6, values determined from water mass hydraulic parameters in the global optimization algorithm.
balance and corresponding r values to optimize ry and r, parameters.

Conclusions

Search space Initial values (NRCS Soil Survey database )
Min. Max. Sand Sandy loam Loam  Silt loam Clay
b) Sandy loam e a (cm™) 0.005 0.150 0.145 0.075 0.036 0.020 0.008

n(-) 1.001 4.00 2.68 1.89 156  1.41 1.09  The method allows the determination of the soil water characteristic and hydraulic conductivity

0,(cm’cm?) | 0.01 010 | 0045 006 0078 0067  0.068 function within only a couple of days, which is an advantage when compared to time consuming
K. (cm s1) le-10 0.012 0.00825 0.00123 0.00029 0.00012 0.00005
standard laboratory methods.
R? = 0.996

o2 » The simple hysteresis model of Kool and Parker (1987) was applied | |« Obtained results for soils spanning a wide textural range are in reasonable agreement with

v o WY . AN S . to evaluate estimated wetting parameters against independently independently measured (i.e., Tempe cells and WP4-T Dewpoint Potentiameter) soil water
' St lesmem - g | measured soil water characteristic data. characteristics.
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 The flowchart illustrates the SHP estimation framework.
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