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• Soil hydraulic properties (i.e., soil water characteristic and hydraulic
conductivity) are key for modeling water flow and transport of solutes, heat and
gases in saturated and unsaturated soils.

• Current laboratory and field techniques for hydraulic property measurements are
expensive, time-consuming, and impractical for large scale applications.

• We present a rapid laboratory proximal sensing method for estimation of soil
hydraulic properties (SHPs).

• The new method infers SHPs from SWIR reflectance imaging of soil moisture
during water imbibition into dry soil in conjunction with a physical reflectance
model (Sadeghi et al., 2015) and inverse numerical modeling of Richards’
equation with HYDRUS 2D (Šimůnek et al., 2008).

• Water imbibition experiments with a surface emitter with constant discharge rate
(0.003 cm3 s-1) were conducted.

• Soil surface reflectance evolution was imaged with a benchtop SWIR line scan
camera.

• Reflectance maps were transformed to surface water content maps with a
nonlinear model introduced in Sadeghi et al. (2015):
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θ: volumetric water content (cm3 cm-3)
θs : saturated volumetric water content (cm3 cm-3)
R: average reflectance (-)
r: transformed reflectance (-)
rd and rs: transformed reflectance at dry and saturation (-)
σ: shape parameter (-)

• Soil reflectance decreases with the advancing wetted region and increasing
water content providing an opportunity to monitor surface water content
dynamics and thereby retrieving soil hydraulic properties.

• The nonlinear function was fitted to θ/θs values determined from water mass
balance and corresponding r values to optimize rd and rs parameters.
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• Water imbibition was described based on Richards’ equation
considering van Genuchten-Mualem hydraulic functions (van
Genuchten, 1980):
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• HYDRUS 2D was utilized for water flow modeling (Šimůnek et
al., 2008). The flow domain was defined as axisymmetrical with
three observation nodes located at r’ = 1.25, 2.5, and 3.75 cm:

• All SWIR image-derived soil water
contents for pixels with Euclidian
distances of 1.25, 2.5 and 3.75 cm
from the emitter were averaged and
considered as the observed soil water
contents at the 3 nodes and used in
the objective function.

• HYDRUS 2D was coupled with a global optimization method
(Simulated Annealing) in MATLAB to optimize hydraulic
parameters α, n, θr and Ks through minimizing the objective
function (φ):
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Parameter Search space Initial values (NRCS Soil Survey database )
Min. Max. Sand Sandy loam Loam Silt loam Clay

α (cm-1) 0.005 0.150 0.145 0.075 0.036 0.020 0.008
n (-) 1.001 4.00 2.68 1.89 1.56 1.41 1.09
θr (cm3 cm-3) 0.01 0.10 0.045 0.065 0.078 0.067 0.068
Ks (cm s-1) 1e-10 0.012 0.00825 0.00123 0.00029 0.00012 0.00005

• Search space and initial values for the van Genuchten (1980)
hydraulic parameters in the global optimization algorithm.

• The simple hysteresis model of Kool and Parker (1987) was applied
to evaluate estimated wetting parameters against independently
measured soil water characteristic data.

• The flowchart illustrates the SHP estimation framework.

b : vector of the optimized parameters 
N and M : the number of estimations and observations in a particular estimation set 
O (r’j, ti) : observed water content at time i for the jth measurement set at location r’
S (r’j, ti, b) : corresponding simulated water content for the vector b

SWIR imaging-based surface soil water dynamics

Estimation of θ(h) and K(h) 

• SWIR imaging provides
high resolution maps of
soil water content during
water imbibition.

• With the advancing 
wetting front, three zones 
including saturated zone, 
unsaturated (transition) 
zone, and dry zone were 
observed.

• The estimated (converted) drying θ(h) and
wetting K(h) (i.e., Ks) showed reasonable
agreement with lab-measured θ(h) and Ks.
However, there exist some discrepancies
at the dry-end (θ < 0.2), particularly for
finer textured soils, which can be
potentially attributed to inaccuracy of the
used retention model at the dry-end
(Tuller et al., 1999).

• A reasonable agreement is observed between
the imaging-based estimated and HYDRUS-
simulated water contents with respect to
distance from the emitter, particular for fine-
textured soils where RMSE ranges between
0.025 and 0.067 for sand, and between 0.008
and 0.018 cm3 cm-3 for clay.

• A reasonable agreement is also observed
between imaging-derived and HYDRUS-based
simulated water contents with respect to time,
especially for the first two nodes, indicating
reasonable performance of the optimization
method to minimize the objective function.

Soil Water Content Simulations

• The method allows the determination of the soil water characteristic and hydraulic conductivity
function within only a couple of days, which is an advantage when compared to time consuming
standard laboratory methods.

• Obtained results for soils spanning a wide textural range are in reasonable agreement with
independently measured (i.e., Tempe cells and WP4-T Dewpoint Potentiameter) soil water
characteristics.
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