Evaluating the 2-D Distribution of Volumetric Water Content and Electrical Conductivity with Cloud-Based Drip Fertigation System.

Poster # 1301

Shinsuke Aoki^{1*}, Yuki Ito¹, Sota Yaegashi², Ryuta Honda², Kiyoshi Ozawa³, Hiroshi Takesako³, Eiji Kita⁴, and Kosuke Noborio² ¹ Graduate School of Agriculture, Meiji University, ² School of Agriculture, Meiji University, ³ Kurokawa Field Science Center, Meiji University, ⁴ Routrek Networks Inc. *E-mail: s aoki@meiji.ac.jp

Introduction

Due to the accident of the Fukushima Daiichi Nuclear Power Plant in 2011, surrounding farms were contaminated with radioactive cesium (Cs). Contaminated but fertile surface soil was successfully decontaminated by replacing a less-fertile sandy soil, implying that crop productivity might be hindered. We thought that applying a fertilization irrigation technology could overcome the problem in crop production in a less-fertile soil. In this research, we evaluated the distribution of water and electrical conductivity in the lessfertile soil growing bell peppers in a greenhouse. A cloud-based drip fertigation system, ZeRo.agri (Routrek Networks, Inc., Kawasaki, Japan), determined the quantity of water for drip irrigation once an hour based on soil water content and solar irradiance using a pyranometer outside the greenhouse.

Materials & Methods

ig. 2 Schematic of TDR-probe and TC

- Site: litate Vilage, Fukushima, Japan (Fig. 1) • Experimental period: 6th Jun. – 14th Nov. (2016)
- Cultivated Crop: Bell Peppers (TAKII & CO., LTD)
- · Control the amount of irrigation: ZeRo.agri
- To monitor the time series of 2-D distribution of volumetric water content (θ) and electrical conductivity (EC) in soil, time domain reflectometry (TDR) probes were horizontally installed, perpendicular to a drip line, at 5, 10, 20, and 30 cm below the soil surface (Fig. 2).
- Volumetric water content (θ) and EC were calculated below equations:

$$\theta = 4.53 \times 10^{-2} + 2.31 \times 10^{-2} \varepsilon - 4.0 \times 10^{-4} \varepsilon^2$$

$$EC_{w} = \frac{\varepsilon_{w}EC_{b}}{\varepsilon_{b} - \varepsilon_{EC_{v}-0}} EC_{w23} = \begin{cases} EC_{v}\left(1.00 + \frac{(25-T)}{49,7} + \frac{(25-T)^{2}}{3728}\right)^{-20 \pm T \pm 47 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{53,3} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm T \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC_{v}\left(1.00 + \frac{(25-T)^{2}}{1667} + \frac{(25-T)^{2}}{1667}\right)^{-3 \pm 28 - 0} \\ EC$$

EC .: EC of soil solution EC ...: EC of soil solution at 25°C

Type-T thermocouple junctions (TC) for measuring soil temperature were installed at the same location as the TDR probes.

Volumetric Water Content

 θ increased after the time of irrigation at the soil surface, but bottom θ were almost not change.

 $\boldsymbol{\theta}$ changes were small in plant side (2-D distribution).

Water Balance ($\Delta \theta$)

- $\Delta \theta$ defined as the difference average θ (average of 12 probes) between 9 a.m. and 5 p.m $\Delta \theta = \theta_{average(17:00)} -$ _ A w(9-00)
- Values of $\Delta \theta$ became smaller as time proceeded because the ZeRo.agri system gradually adjusted the amount of irrigation water applied (Fig. 4).

- EC_{w25} tended to decrease during the daytime.
- ${}^{\rm \cdot}$ EC_{w25} hardly changes on the day when time series variation of θ was small.

References: U.S. Salinity Laboratory Staff (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook no. 60. U.S.D.A., U.S. Government	
Printing Office, Washington, DC.	FOR A SECURE FUTURE
	Service Ser