

Comparing Field Measurement Methods of Soil pH and Moisture for Use in an Urban Site Assessment Luke Scheberl¹, Bryant C. Scharenbroch^{1,2} and Kelby Fite³ ¹University of Wisconsin – Stevens Point, Stevens Point, WI, USA ²The Morton Arboretum, Lisle IL, USA, ³Bartlett Tree Experts, Charlotte, NC, USA

Introduction

- Field determination of site conditions is crucial to maximize urban tree performance (Scharenbroch et al. 2017).
- Soil pH and moisture are highly variable requiring frequent evaluation (Wuest 2015).
- Soil pH impacts tree nutrient availability (Wastson et al. 2014).

- Soil moisture directly relates to plant available water (Romano and Santini 2002).
- This study tested low-cost sensors for determining soil pH and volumetric moisture content (VMC).

Methods

- Four soils (Table 1) were sieved (6 mm) at field moisture, homogenized, and air dried.
- Soils were then wetted to three VMC's (0-30%).
- PVC containers were packed in 5 cm increments to field bulk densities (1.2-1.4 gcm⁻³).
- Each container was replicated seven times.
- Twenty-one sensors (Figure 2) of varying measurement methods were evaluated.
- Standard pH values were determined using a pH glass electrode sensor (Thomas, 1996). Standard moisture values were determined using the oven-dry method converted to VMC (Topp and Ferre, 2002). Pearson's and Spearman's correlation and Lin's concordance coefficients were determined with SAS JMP 7.0 software (SAS Inc., Cary, NC USA).

Figure 1. Sensor pH readings by soil texture and moisture content (white= air dry, yellow= \approx 0.5 field capacity, purple= \approx field capacity) compared to the standard.

Table 2. Pearson's correlation (r), Spearman's correlation (P) and Lin's correlation (Pc) values between tested pH sensors and a reference sensor (Hach Sension+ PH3).

Sensor (Fig. 2 label)	Cost (\$)	r	Ρ	Pc [†]	Sensor (Fig. 2 label)	Cost (\$)	r	Ρ	Pc [†]		
PCTestr 35 (P)	135	0.96*	0.92*	0.95	Luster Leaf1847 (U)	21	-0.07`	-0.12	0.01		
pH 5+ (O)	225	0.97*	0.95*	0.98	MoonCity 3-in-1 (B)	13	0.06`	0.00	0.02		
Turf-Tec PH1-N (R)	299	0.01	0.00	0.01	Dr.Meter [®] 4-in-1 (C)	13	-0.28′	-0.60`	0.19		
Luster Leaf 1835 (T)	26	-0.10`	-0.04`	-0.01	Control Wizard (D)	60	-0.25 [°]	-0.10`	-0.02		
Luster Leaf 1840 (S)	14	-0.07`	-0.04`	0.03	Kelway [®] Tester (A)	120	0.15′	0.08	0.22		
Luster Leaf 1845 (Q)	11	0.11 [*]	0.07 [~]	0.06	⁺ No p-value is calculated for <i>Pc</i> , * Denotes <i>P</i> <0.0001, / denotes <i>P</i> <0.05, and ` denotes <i>P</i> > 0.1				P P > 0.1		
VMC Results											
100 A	Se Tur	f-Tec So	il Moist	ure	⁵⁰ 7 B		♦ Hydro	osense I	/		

Figure 2. Evaluated sensors grouped by variable measured and measurement method.

• VMC sensors using time domain reflectometry (E), frequency

domain reflectometry (F), or electrical conductance (G-N)

Combination sensors measure soil pH and VMC using EC (A-D)

- Soil pH sensors using a glass electrode (O,P) or a metal electrode (Q-U)
- (B) (C) (D) (A) Combination

Discussion

- Glass electrode sensors (A) showed significant 1:1 correlations to the standard (Table 2).
- Metal electrode sensors (B) failed to show any significant correlation to the standard (Table 2).
- Glass electrode sensors' increase in accuracy is likely due to measurement of hydrogen conductance instead of bulk electrical conductance.
- Dielectric VMC sensors were more accurate than electrical conductance sensors (Table 3).

Table 1. Descriptions and properties of investigated soils.										
Soil Series	Subgroup	Texture	Sand	Silt	Clay	SOM	EC			
			(%)	(%)	(%)	(%)	(µS cm⁻¹)			
Voucupoo	Tunic	Clay	10	32	58	3.64	236			
kewaunee	Typic	Clay	22	22	ЭГ		205			
silt loam	нарійдаіт	Loam	33	32	35	4.56	205			
		Sandy			•					
KOSNOIT	Haplic	Loam	6/	24	9	2.67	124			
sandy	Glossudalf	loamy								
loam	JIJJJUUUII	Louny	83	8	9	0.51	55			

- This increase in accuracy may be due to the strong relationship between dielectric permittivity and VMC.
- Overestimation of VMC was observed with finer textures near field capacity (Fig.3).
- The two most expensive VMC sensors were also the most accurate.

Conclusion

- Soil pH sensors perform best when measuring a soil solution (soil:deionized water).
- Soil moisture is best determined by measuring dielectric properties.
- Sensor cost is a strong indicator of sensor quality.

References

loam

9 0.51 03 Ο Sand

Acknowledgements

This study was funded, in part, by a Hyland R. Johns grant from the Tree Research & Education Endowment (TREE) Fund, Naperville, IL, the University of Wisconsin – Stevens Point, Stevens Point, WI, The Morton Arboretum, Lisle, IL,

and Bartlett Tree Experts, Charlotte, NC.

 \approx 0.5 field capacity, purple= \approx field capacity) compared to the laboratory standard.

Table 3. Pearson's correlation (r), Spearman's correlation (P) and Lin's correlation (Pc) values between tested soil (VMC) sensors and a standard VMC.

*P < 0.0001, [†] No p-value is calculated using Pc, 'Sensor read with ProCheck unit (\$506)

• Romano, N. and Santini, A., 2002. 3.3. 3 Field. Methods of Soil Analysis: Part 4, 721-738. • Scharenbroch, B.C., Carter, D., Bialecki, M., Fahey, R., Scheberl, L., Catania, M., Roman, L.A., Bassuk, N., Harper, R.W., Werner, L. and Siewert, A., 2017. A rapid urban site index for assessing the quality of street tree planting sites. Urban Forestry & Urban Greening, 27, 279-286.

• Thomas, G. W., 1996. Soil pH and soil acidity. Methods of Soil Analysis: Part 3, 475-490. Topp, G. C., and Ferré, P. A., 2002. Thermogravimetric method using convective ovendrying. Methods of Soil Analysis: Part 4, 422-424.

 Watson, G.W., Hewitt, A.M., Custic, M. and Lo, M., 2014. The Management of Tree Root Systems in Urban and Suburban Settings: A Review of Soil Influence on Root Growth. Arboriculture & Urban Forestry, 40(4), 193-217.

Wuest, S. B., 2015. Seasonal variation in soil bulk density, organic nitrogen, available phosphorus, and pH. Soil Science Society of America Journal, 79(4), 1188-1197.