

Introduction

- Oklahoma farmers plant 1.5-2.5 million hectares of v wheat every year.
- Nitrogen (N) timing application can modify grain yield accumulation pattern and N remobilization impacting directly the grain yield and protein content.
- The timing of N applications can also impact nitroger efficiency of the crop
- The use the of the N-Rich Strip N recommendation method requires the field to be N deficient in season.

Objectives

This study was conducted to determine the impact of delaying top-dress application of N in winter wheat yield and protein. Also, will attempt to identify critical thresholds for days after response or response index at which maximum yield can no longer be achieved.

Materials and Methods

- Conducted in 2016-2017 season in dryland conditions.
- Four trials were establish in 3 locations: Stillwater, OK, Perkins, OK and Lake Carl Blackwell (2 trials), near Stillwater, OK
- Treatments were arranged in randomized complete block with three replications.
- Prior to planting, soil sample were collected and appropriate fertilizer were applied at planting based on the pre-plant soil analysis except for N.
- A pre-plant treatment of 100 kg ha⁻¹ of N was broadcast applied as ammonium nitrate (AN) on treatment 1.
- The top dress applications started after visual symptom difference (VSD) was observed between the pre-plant treatment and the check (no N applied). VSD was confirmed with NDVI sensor readings. When difference were bigger than 0.2, AN was broadcasted at a rate of 100 kg ha⁻¹.
- Fertilizer N were applied at 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 growing degree days, greater than 0 (GDD>0) after VSD.

Top-Dress Nitrogen Application Timing in Winter Wheat J. L. B. Souza, V. Reed, J. M. Abit, D. B. Arnall Oklahoma State University

	Treatment	Fertilization Timimg	N Ra
	1	Pre-plant	
_	2	Check (no N)	
winter	3	0 GDD>0 after VSD	
	4	7 GDD>0 after VSD	
d, N g	5	14 GDD>0 after VSD	
	6	21 GDD>0 after VSD	
	7	28 GDD>0 after VSD	
	8	35 GDD>0 after VSD	
	9	42 GDD>0 after VSD	
en use	10	49 GDD>0 after VSD	
	11	56 GDD>0 after VSD	
	12	63 GDD>0 after VSD	

2017. The yield of treatments with a \star are significantly greater than the pre-plant treatment (Dunnet test, α <0.05)

with proper weather than at first sign of N stress.