

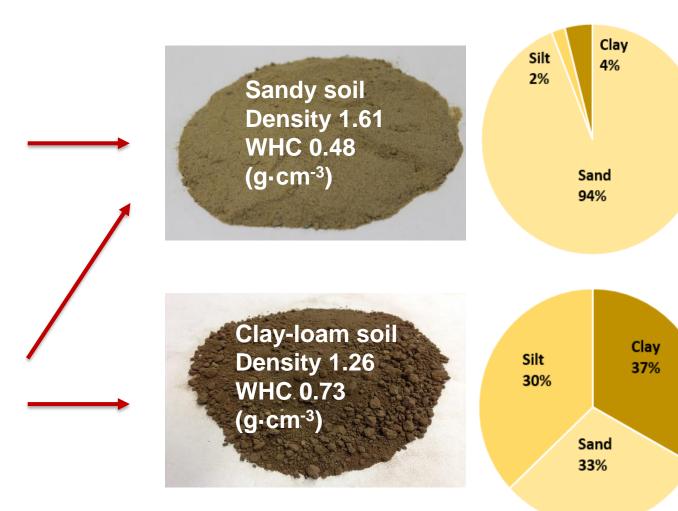
Introduction

Organic matter-derived soil amendments containing humic substances (HS) have a functional role to improve plant growth and soil quality, but their response to water deficit stress is unknown, particularly in vegetable crops.

Objective

To assess the impacts of lignite-derived HS on bell pepper and **GH** clay soil biota growth and evaluate their potential mitigative effects under water deficit stress.

Materials and Methods


Plant material: Bell pepper (*Capsicum annuum* cv. Revolution)

Growth environments

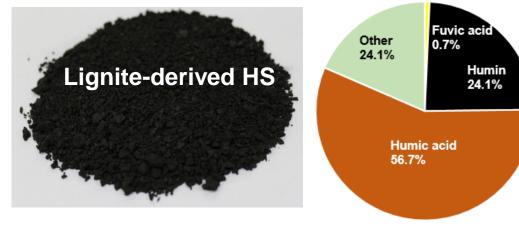
Growth chamber (16 h/day, 8 h/night)

• Ramping temperature: 20 to 28 °C Ramping light intensity: 0 to 500 µmol m⁻² s⁻¹

Greenhouse

• Average temperature: 29.4°C

• Average daily light integral: 11.0 mol·m⁻²·day⁻¹


Treatments

a. Soil amendment (SA)

- Control
- HS (0.5 kg·m⁻²)

b. Irrigation (IR)

- Severe stress, 20% WHC *
- Mild stress, 40% WHC
- Moderate stress, 60% WHC
- Well-watered, 80% WHC
- * WHC: water holding capacity

Growth chamber

- Start: 4 weeks after direct seeding
- End: 10 weeks after direct seeding

Greenhouse

- Start: 1 week after transplanting
- End: 4 months after transplanting

Plant morphology

- Plant height (**PH**, cm) • Stem diameter (SD, mm)
- Above-ground dry weight (**AGDW**, g)

Plant physiology

- Photosynthesis *Pn* (µmolC0₂·m⁻²·s⁻¹)
- Stomatal conductance g_s (molH₂0·m⁻²·s⁻¹) • Transpiration E (mmolH₂0·m⁻²·s⁻¹)
- Chlorophyll content index (SPAD)

Root traits

- Root dry weight (**RDW**, g)
- Root length (**RL**, m)
- Root surface area (**RSA**, cm²) • Root average diameter (**RAD**, mm)

Soil basic analysis (cores)

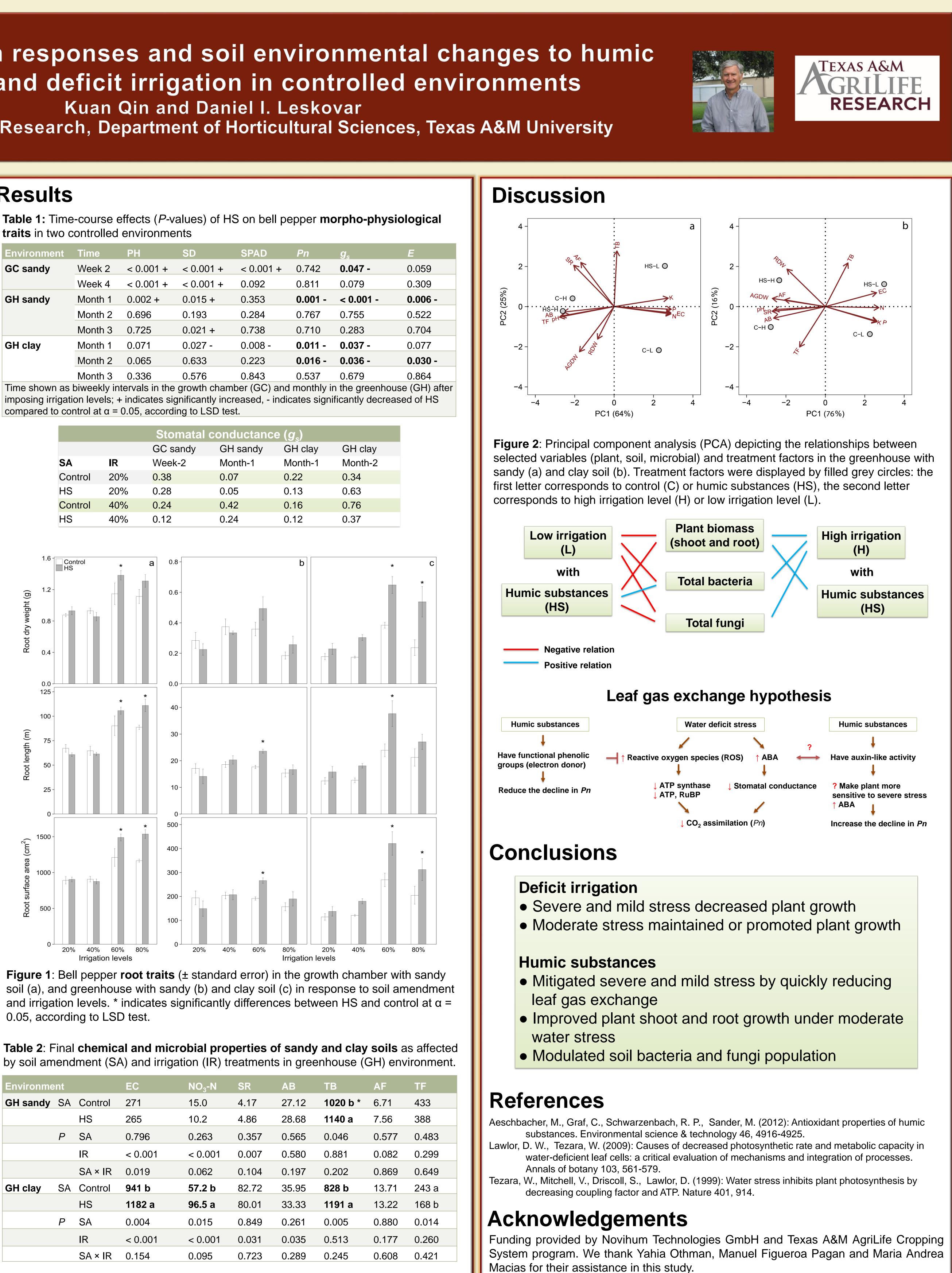
Measurements

- Soil pH (**pH**) • Electrical conductivity (EC, μmhos·cm⁻¹)
- Nitrate-nitrogen content (**NO**₃-**N**, mg·kg⁻¹)
- Available phosphorus (**P**, mg·kg⁻¹) • Available potassium (K, mg·kg⁻¹)
- Soil microbial analysis (cores) • Soil respiration (**SR**, CO_2 -C, mg·kg⁻¹)
- Active bacteria (**AB**, µg·g⁻¹)
- Total bacteria (**TB**, μg·g⁻¹) Active fungi (AF, μg·g⁻¹)
- Total fungi (TF, μg·g⁻¹)

Data analysis: ANOVA; multiple comparisons of means: LSD under α = 0.05 in SAS

Bell pepper growth responses and soil environmental changes to humic substances and deficit irrigation in controlled environments Kuan Qin and Daniel I. Leskovar Texas A&M AgriLife Research, Department of Horticultural Sciences, Texas A&M University

Results



able 1: Time-course effects (<i>P</i> -values) of HS on bell peppe aits in two controlled environments								
nvironment	Time	PH	SD	SPAD	Pn			
C sandy	Week 2	< 0.001 +	< 0.001 +	< 0.001 +	0.74			
	Week 4	< 0.001 +	< 0.001 +	0.092	0.81			

0.576 0.843 0.537 0.336 0.679 Month 3 compared to control at α = 0.05, according to LSD test.

	Stomatal conductance (g _s)						
		GC sandy	GH sandy	GH clay	GH cla		
SA	IR	Week-2	Month-1	Month-1	Month-		
Control	20%	<mark>0.38</mark>	0.07	0.22	0.34		
HS	20%	0.28	0.05	0.13	0.63		
Control	40%	0.24	0.42	0.16	0.76		
HS	40%	0.12	0.24	0.12	0.37		

0.05, according to LSD test.

Environment		EC	NO ₃ -N	SR	AB	ТВ	
GH sandy	SA	Control	271	15.0	4.17	27.12	1020 b *
		HS	265	10.2	4.86	28.68	1140 a
	Р	SA	0.796	0.263	0.357	0.565	0.046
		IR	< 0.001	< 0.001	0.007	0.580	0.881
		SA × IR	0.019	0.062	0.104	0.197	0.202
GH clay	SA	Control	941 b	57.2 b	82.72	35.95	828 b
		HS	1182 a	96.5 a	80.01	33.33	1191 a
	Ρ	SA	0.004	0.015	0.849	0.261	0.005
		IR	< 0.001	< 0.001	0.031	0.035	0.513
		SA × IR	0.154	0.095	0.723	0.289	0.245

