Phosphorus Association and Release from Biosolids and **Corresponding Biochars**

A.M. Freitas^{1*}, V.D. Nair¹, W.G. Harris¹, M.R. Mosquera-Losada², P.K.R. Nair³

¹Soil and Water Sciences Department, University of Florida, Gainesville, FL ² Department of Crop Production, Universidad de Santiago de Compostela, Lugo, Spain ³ School of Forest Resources & Conservation, University of Florida, Gainesville, FL

Introduction	Results and Discussion						
 Extensive research on P release from biosolids 	Jacksonville - FL US	Selected chemical characteristics of biosolids and biochars; Mehlich 3 (M3). Units: mg kg ⁻¹					
originating from various processes has been done	$\begin{array}{c} C = Calcite \\ K = Kaolinite \\ Q = Quartz \end{array}$	Franca-SP Brazil M3-P M3-Ca M3-Mg M3-Fe M3-AI Total P TKN WSP					
(Drandt at al. 2001), little is known shout his shor		Anaerobic Biosolids 677 2980 655 383 1349 NA 39 614 69					
(Brandt et al., 2004); little is known about biochar	Jacksonville-FL	Anaerobic Biosolids 677 2980 655 383 1349 NA 39 614 69 Anaerobic Biosolids-Biochar 600 4147 741 487 1386 NA 21 302 17					
derived from biosolids (Gonzaga et al.,2017)	K Mg P						

- Further investigation of biosolids-biochar
 - properties is imperative to match cropping requirements and safe environmental application (IBI White Paper, 2013)
- P retention in non-calcareous soils is a property of the soil and independent of the nature of the

biochar feedstock (Dari et al., 2016)

Objectives

Evaluate P associations (solid state assessment), and solution chemistry of biosolids and their respective biochars from different locations: Franca-SP, Brazil; Jacksonville-FL, US and Lugo-Spain)

Fig 1. XRD indicates the loss of struvite $(NH_4MgPO_4 \cdot 6H_2O)$ during pyrolysis. Calcite, kaolinite and quartz were identified in both materials

Fig 2. Biosolids (A, B and C) and their

corresponding biochars (D, E and F)

showed Mg-P associations

Selected chemical characteristics of biosolids and biochars; Mehlich 3 (M3). Units: mg kg⁻¹

	Jacksonville-FL US	M3-P	M3-Ca	M3-Mg	M3-Fe	M3-AI	Total P	TKN	WSP
	Biosolids	10 960	4730	6271	573	258	32 486	54 224	3295
	Biosolids-Biochar	7062	2326	5139	437	188	67 330	50 689	303

Lugo - Spain

Fig 5. Candler soil amended with 1% of various souces of biosolids and respective biochars. Candler is less retentive soil than Apopka (Fig. 6). Bars represent standard deviation of the mean (n=3).

Fig 6. Apopka soil amended with 1% of biosolids from Jacksonville-FL and respective biochar. Apopka is more retentive soil than Candler (Fig. 5). Bars represent standard deviation of the mean (n=3).

Summary

- Materials obtained by the same process (e.g., anaerobic

obtained by different processes

 Biosolids from different locations and processes were evaluated:

Franca – SP, Brazil: anaerobic digestion

- Jacksonville FL, US: anaerobic digestion
- Lugo, Spain: i) Anaerobic, ii) Anaerobic-composted, iii) Anaerobic-pelletized
- Biosolids were converted into biochar in lab
- Desorption experiments were performed by mixing 1% (w/w) biosolids-biochar with two contrasting P

D?=Dolomite M= Muscovit Fig 3. XRD patterns 1, 2 and 3 of biosolids and their corresponding Q C d=3.348 d=3.038 **Biosolids-Biochar Anaerobio** biochars did not show mineralogical diferences. Common minerals found were: Calcite ($CaCO_3$), Dolomite (CaMg(CO3)₂, Muscovite $(KAI_2(Si_3AI)O_{10}(OH,F)_2)$ and Quartz (SiO_2) . Scale bar = 200 µm

C= Calcite

? M d=4.483 d=7.115 d=5.031 d=3.857^{d=3.480}

20

10

Selected chemical characteristics of biosolids and biochars; Mehlich 3 (M3). Units: mg kg⁻¹

Biosolids	M3-P	M3-Ca	M3-Mg	M3-Fe	M3-AI	Total P	TKN	WSP
Anaerobic	2010	15 601	1389	293	513	19 548	32 960	328
Anaerobic-composted	2456	17 835	1723	404	329	22 619	21 676	293
Anaerobic-pelletized	1555	10 949	1357	225	442	21 330	32 160	87
Biosolids-Biochar								
Anaerobic	1921	18 085	985	300	731	31139	16 353	140
Anaerobic-composted	2128	19 287	1130	326	493	39 472	13 945	67
Anaerobic-pelletized	2437	18 885	1706	218	313	41 321	18 068	69

Franca - SP Brazil

digestion) varied in composition and P release behavior

Conversion of biosolids into biochar modified the mineral

composition of the final product (e.g., loss of struvite in

biosolids-biochar from Jacksoville-FL)

• P release was dependent on the nature, origin of the materials and the P retention capacity of the soil that biosolids or biochar is applied

Implications

• P release from biosolids and biosolids-biochar is highly

dependent on their origin and process of production.

Therefore in addition to the P retention capacity of the soil,

properties of biosolids and their biochars should be

considered during land application to minimize

environmental risk of P loss from the soil

retentive soils (Apopka and Candler) and

incubated for 20 days. Mixes were subjected to 20

extractions with 0.01 *M* KCI and extractants were

analyzed for P (molybdenum blue method)

Solid state P associations assessed by X-ray

diffration and SEM-EDS

Fig 4: X-ray diffraction pattern for biosolids and biosolids-biochar from Franca-SP Brazil. No crystalline phosphate mineral was identified. Presence of weathering-resistant soil minerals were found extensively in both materials.

References

Brandt, R.C., Elliott, H.A., O'Connor, G.A., 2004. Water-extractable phosphorus in biosolids: Implications for land-based recycling. Water Environment Research 76(2), 121-129. IBI, White Paper. Available on: www.biocharinternational.org/sites/default/files/IBI_white_paper_biosolids_biochar_final.pdf Gonzaga, M.I.S., Mackowiak, C.L., Comerford, N.B., Moline, E.F.D., Shirley, J.P., Guimaraes, D.V., 2017. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil & Tillage Research 165, 59-65. Dari, B., Nair, V.D., Harris, W.G., Nair, P.K.R., Sollenberger, L., Mylavarapu, R., 2016. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 280, 82–87. doi:10.1016/j.geoderma.2016.06.018

Acknowledgment

Support for the soil analyses in this study by USDA-Hatch Funds is greatly appreciated.