## Uncovering the potential of a multi-purpose legume, Lablab purpureus (L.) Sweet

Alison Nord<sup>1</sup>, Sieglinde Snapp<sup>1</sup>, Neil R. Miller<sup>2</sup>, Wilfred Mariki<sup>3</sup>

<sup>1</sup>Plant, Soil, and Microbial Sciences Dept., MSU

<sup>2</sup>Canadian Foodgrains Bank, Arusha, Tanzania

<sup>3</sup>Selian Agriculture Research Institute, Arusha, Tanzania





# Background

- Lablab purpureus (L.) Sweet is a legume originating in eastern Africa and grown globally for use as forage, pulse, green manure, and ornamental.
- Traditionally grown for food and fodder in Africa, but production declined during colonial period when common bean was favored.
- Large genetic diversity
- Survives a wide range of environmental conditions
- Previous research suggests it has a high potential to fix N

MICHIGAN STATE

U N I V E R S I T Y

• Promising multi-purpose legume for smallholder farmers in East Africa that can improve

## Methods

|    | Block 1          |    |    |    |    |     | Block 2 |    |                 |  |    |    | Block 3 |    |    |    |    |    |    |    |    |    |    |    |    |    |       |              |
|----|------------------|----|----|----|----|-----|---------|----|-----------------|--|----|----|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|--------------|
| 13 | 3 2              | 21 | 33 | 27 | 10 | ) 3 | 3 1     | .9 | 4               |  | 4  | 26 | 3       | 32 | 31 | 8  | 18 | 12 | 22 | 29 | 6  | 11 | 3  | 12 | 19 | 25 | , =   | Intercropped |
| 1  | 5                | 3  | 23 | 10 | 7  | 27  | 73      | 31 | 16              |  | 22 | 3  | 29      | 17 | 24 | 13 | 9  | 36 | 33 | 3  | 20 | 9  | 25 | 36 | 5  | 12 | · = ' | Subsampled   |
|    | 1 1              | .7 | 28 | 14 | 11 | 20  | ) 1     | .2 | 24              |  | 14 | 23 | 7       | 33 | 10 | 25 | 18 | 4  | 26 | 21 | 31 | 16 | 10 | 17 | 6  | 13 |       |              |
| 23 | 3 3              | 1  | 16 | 22 | 14 | 24  | 1       | 5  | 11              |  | 28 | 22 | 23      | 19 | 27 | 13 | 5  | 10 | 13 | 8  | 16 | 33 | 21 | 7  | 23 | 26 | ,     |              |
| (  | 5 <mark>2</mark> | 8  | 25 | 1  | 15 | 5 8 | 3 1     | .7 | <mark>36</mark> |  | 26 | 31 | 19      | 5  | 20 | 1  | 15 | 11 | 20 | 31 | 1  | 27 | 9  | 14 | 4  | 17 |       |              |
|    | 5 1              | .3 | 29 | 18 | 8  | 8 1 | 2       | 21 | 25              |  | 14 | 29 | 20      | 16 | 24 | 6  | 9  | 1  | 14 | 28 | 18 | 11 | 22 | 7  | 27 | 1  |       |              |
| 18 | <mark>3</mark> 2 | 26 | 29 | 7  | ç  | 12  | 2       | 2  | <mark>20</mark> |  | 33 | 17 | 25      | 2  | 15 | 21 | 7  | 11 | 15 | 29 | 24 | 23 | 8  | 4  | 2  | 19 |       |              |
| 20 | 6                | 9  | 22 | 6  | 32 |     | 2 3     | 3  | 19              |  | 16 | 12 | 21      | 27 | 8  | 6  | 28 | 2  | 24 | 18 | 28 | 5  | 2  | 15 | 10 | 32 | ,     |              |

2 Sites – Selian Agricultural Research Institute (SARI), Tropical Pesticides Research Institute (TPRI – Moshi) over 2 seasons (2016 & 2017)





- soil fertility and productivity of maize cropping systems
- Lack of research quantifying lablab germplasm biomass production, grain production, and N<sup>2</sup>-fxation potential across environments

| No | 0. | Accession      | Maturity   | Flower color | Seed Wt<br>(g/100 seeds) | Characteristics            | Origin   | Other Properties                  |
|----|----|----------------|------------|--------------|--------------------------|----------------------------|----------|-----------------------------------|
|    | 1  | CIAT 22759     | Early-mid  | Purple       | 30                       | Forage variety             | Kenya    |                                   |
|    | 3  | DL1001         | Late       | White        | 23                       | Indeterminate              | Kenya    | Dual purpose                      |
|    | 4  | DL1002         | Early      | Purple       | 26                       | Determinate                | Kenya    | Popular grain variety in<br>Kenya |
|    | 6  | Echo Cream     | Mid        | White        | 30                       |                            | Tanzania |                                   |
|    | 8  | Highworth      | Early      | Purple       | 25                       | Forage variety             | India    | Popular commercial variety        |
|    | 12 | ILRI 13700     | Very late  | Purple       | 38                       | Vigorous, coarse<br>stem   | Ethiopia |                                   |
|    | 14 | ILRI 14437     | Early-mid  | Purple       | 23                       |                            | Unknown  |                                   |
|    | 16 | ILRI 6930      | Early-mid  | White        | 31                       | Long pods, high<br>biomass | Unknown  | Drought tolerant                  |
|    | 17 | Karamoja Red   | Mid        | White        | 36                       |                            | Uganda   |                                   |
|    | 21 | PI 195851      | Very late  | White        | 23                       | High biomass               | Egypt    | Drought tolerant, low grain       |
|    | 22 | Q 6880B        | Very early | Purple       | 22                       | Short-season               | Kenya    | Dual purpose                      |
|    | 23 | Rongai         | Very late  | White        | 26                       |                            | Kenya    | Popular commercial variety        |
|    | 25 | SARI Nyeupe    | Late       | White        | 28                       |                            | Tanzania |                                   |
|    | 26 | SARI Rongai    | Mid        | Purple       | 30                       |                            | Tanzania |                                   |
|    | 31 | Fadhari cowpea | Mid-late   |              | 11                       | Spreading growth           | Tanzania |                                   |

Table 1.

Accessions described above were collected across Africa and used in this study to evaluate biomass at two sites over two seasons. These are a subsample identified as representing a range of growth types from a core collection of 32. Cowpea included as a reference crop.



- Modified split-plot design 3 blocks with 32 accessions sole cropped and intercropped with maize
- 15 accessions subsampled for biomass at flowering stage. This included 14 lablab accessions and one reference cowpea. Accessions chosen to represent a wide range of growth types.
- Destructive biomass harvest based on net plot of 0.9m x 2m (Figure 4)
- BNF will be measured by the natural abundance method



#### Figure 4.

Pictures showing sampling frame of biomass harvest (1), lablab plot intercropped with maize (2) and sole crop plot (3)

| Type 3 Analysis of Variance |     |                   |                |             |            |        |  |  |  |  |  |
|-----------------------------|-----|-------------------|----------------|-------------|------------|--------|--|--|--|--|--|
| Source                      | DF  | Sum of<br>Squares | Mean<br>Square | Error<br>DF | F<br>Value | Pr > F |  |  |  |  |  |
| Environment                 | 3   | 65.54             | 21.85          | 6           | 32.47      | 0.0004 |  |  |  |  |  |
| Accession                   | 14  | 13.10             | 0.94           | 28          | 4.63       | 0.0003 |  |  |  |  |  |
| Environment*Accession       | 42  | 25.60             | 0.61           | 202         | 2.06       | 0.0005 |  |  |  |  |  |
| Intercrop                   | 1   | 35.27             | 35.27          | 2           | 24.11      | 0.0391 |  |  |  |  |  |
| Environment*Intercrop       | 3   | 15.11             | 5.04           | 202         | 17.04      | <.0001 |  |  |  |  |  |
| Accession*Intercrop         | 14  | 4.68              | 0.33           | 202         | 1.13       | 0.3334 |  |  |  |  |  |
| Env*Access*Inter            | 42  | 9.47              | 0.23           | 202         | 0.76       | 0.8508 |  |  |  |  |  |
| Block                       | 2   | 0.37              | 0.18           | 2.6552      | 0.11       | 0.9033 |  |  |  |  |  |
| Environment*Block           | 6   | 4.04              | 0.67           | 202         | 2.28       | 0.038  |  |  |  |  |  |
| Block*Accession             | 28  | 5.66              | 0.20           | 202         | 0.68       | 0.8838 |  |  |  |  |  |
| Block*Intercrop             | 2   | 2.93              | 1.46           | 202         | 4.95       | 0.008  |  |  |  |  |  |
| Residual                    | 202 | 59.74             | 0.30           |             |            |        |  |  |  |  |  |

#### Table 2.

Analysis of variance for lablab biomass using SAS<sup>®</sup> PROC MIXED (data transformed using natural log)



#### Figure 1.

Lablab accessions Q 6880B, Karamoja Red, and ILRI 13700. These are examples from the 14 lablab accessions in Table 1.

## Objectives

Identify promising lablab accession types to be incorporated into smallholder farmer cropping systems.

#### 1 3 4 6 8 12 14 16 17 21 22 23 25 26 31 1 3 4 6 8 12 14 16 17 21 22 23 25 26 31 Accessio

#### Figure 2.

Lablab biomass means across accession and environments (Moshi and SARI over two seasons) in sole crop and maize intercrop.



### Results

- Environment (site x year), accession, intercropping, and the interactions of environment with accession and intercropping all significantly influenced biomass amounts (Table 2)
- Sole cropped lablab produced more biomass than intercropped in the first year, but sole crop biomass markedly less productive in second year (Figure 2)
- Lablab biomass production highly variable across environments for all accessions
- Most intercropped accessions more adapted to marginal SARI 2017 environment than other three environments
- Sole cropped accessions more adapted to SARI 2016 environment (higher rainfall, less disease pressure than 2017)
- Cowpea reference crop (#31) poor performer overall, however it was only sole crop that was well adapted to SARI 2017 environment (Figure 3)

## Conclusions

Alison Nord

PhD Student

nordalis@msu.edu

(978)549-6548

Plant, Soil and Microbial Sciences

- Environment effects on lablab biomass suggest conditions such as rainfall, temperature, and disease may have a greater effect on lablab productivity than genetics
- Sole cropping lablab in high performing environments may be more beneficial than intercropping lablab with maize.
- Further analysis of grain yields and BNF measurements needed to compare to biomass trends
- More research needed to identify lablab accession performance across different environments

Evaluate lablab accessions suitability in sole and maize intercrop systems based on total biomass production, grain yield, and BNF potential in different environments.

Lablab Biomass (g/plant)

Figure 3.

Biplot representing lablab biomass main effect against PC1 scores of 15 accessions in sole ( ) and intercrop ( ) system and 4 environments

