

# **AGING EFFECTS ON BIOCHAR-Cd RETENTION**

Barbara S. Q. Alves<sup>1</sup>, Luiz A. Fernandes<sup>2</sup>, William R. Horwath<sup>1</sup>, Sanjai J. Parikh<sup>1</sup>

<sup>1</sup> Department of Land, Air, and Water Resources, University of California, Davis

<sup>2</sup> Instituto de Ciências Agrárias, Universidade Federal de Minas Gerais, Brazil

#### INTRODUCTION

#### **Cadmium-soil contamination In USA**



|                                                                                |           |              |            | Impact of pyrolysis te<br>on Log K <sub>f</sub> |                  |             |                  |
|--------------------------------------------------------------------------------|-----------|--------------|------------|-------------------------------------------------|------------------|-------------|------------------|
|                                                                                |           | 7.0          | •          |                                                 |                  |             |                  |
| #                                                                              | Sample ID | Pyrolysis    | Temp. (°C) | Feedstock                                       | Post treatment   | 6.0         |                  |
| 1                                                                              | CP1 raw   | Slow         | 600        | Coconut shell                                   | No               | 5.0         |                  |
| 2                                                                              | CP2 raw   | Slow         | 650        | Softwood                                        | No               | ¥4.0        | <b>♦</b>         |
| 3                                                                              | CP1*      | Slow         | 600        | Coconut shell                                   | Yes***           | <b>3</b> .0 | *                |
| 4                                                                              | CP2**     | Slow         | 650        | Softwood                                        | Yes***           | 2.0         | •                |
| 5                                                                              | CP3*      | Slow         | 600        | Coconut shell                                   | Yes***           | 1.0         |                  |
| 6                                                                              | CP8*      | Slow         | 600        | Coconut shell                                   | Yes***           | 0.0         | 650              |
| 7                                                                              | CP10*     | Slow         | 600        | Coconut shell                                   | Yes***           | 450         | 650<br>Temperatu |
| 8                                                                              | ASB       | Fast         | 500        | Almond Shell                                    | No               | Freundli    | ch Model         |
| 9                                                                              | WSB       | Fast         | 500        | Walnut shell                                    | No               |             | nple             |
| 10                                                                             | P2        | Gasification | 900        | Walnut shell                                    | No               |             | NB               |
| 11                                                                             | SWB       | Gasification | 800        | Mix Softwoods                                   | Yes: inoculation |             | P3<br>SB         |
| *Based on CP1 raw. ** Based on CP2 raw. ***Proprietary information at present. |           |              |            |                                                 |                  |             | 2                |



Source: Ernst (2012).

- Cadmium is a non-essential heavy metal and persists in the environment. It accumulates in the food chain (half-life in human kidney: 10-30 years) and is **toxic** for organisms at very low concentrations. Non-smoking humans are exposed mainly by ingestion of **contaminated food**.
- Sources of Cd: Geogenic, manure, phosphorous fertilizers and atmospheric deposition. Irrigation with recycled water, usually rich in Cl, helps to make Cd more plant available.



#### **Biochar characterization:**



Sorption & desorption isotherms at pH 7: groups by leaching with 30% H<sub>2</sub>O<sub>2</sub>:

WSB 0.10 0.15 0.20 0.00 0.05 △ CP2 Ce (mmol/L) ure (°C) raw

| Freundlich Model | Fresh              |                | Oxidized           |                | Δ log K <sub>f</sub> |
|------------------|--------------------|----------------|--------------------|----------------|----------------------|
| Sample           | log K <sub>f</sub> | R <sup>2</sup> | log K <sub>f</sub> | R <sup>2</sup> | (%)                  |
| SWB              | 6.29               | 0.967          | 3.74               | 0.949          | - 41                 |
| CP3              | 3.79               | 0.842          | 2.22               | 0.988          | - 41                 |
| ASB              | 2.50               | 0.991          | 3.42               | 0.995          | + 37                 |
| P2               | 2.39               | 0.955          | 5.69               | 0.934          | + 138                |
| CP8              | 2.38               | 0.896          | 2.55               | 0.976          | + 7                  |
| CP1 raw          | 2.50               | 0.860          | 2.45               | 0.994          | -2                   |



**DRIFTS: fresh & oxidized biochars** 

softer 1. 250 200 ver 1.0 250 ver 1. 250 state

1.20

0.60

0.40 0

Source: ACMS (2003).

matter).

### **OBJECTIVE**

To explain and quantify differences in Cd retention between fresh and oxidized biochars (charcoal produced via pyrolyzed organic





- Solid-liquid ratio: 1:25
- Solution: NP H<sub>2</sub>O + 5 mmol L<sup>-1</sup> NaCl
- React 24h (8 rpm at 25°C).
- Shake 2h (120rpm) + 16h reaction time. Samples filtrated, and washed with DI H<sub>2</sub>O. Biochars air-dried for 72h.

### RESULTS



Aging: Increasing oxygenated functional





## **SUMMARY**

**DRIFTS:** fresh biochars

- No trend between pyrolysis temperature and Cd retention
- Cd retention does not correlate with a single property and is likely driven by a set of properties, such as: aromaticity, surface functional groups, ash content, CEC, surface area and alkalinity
- Biochar oxidation only increased Cd retention in highly aromatic chars

# **NEXT STEPS**

--SWB

**→**-CP3

-**-**P2

**--**CP8

**-----CP1** 

**≁C10** 

--WSB

0.10

- Complete characterization to compare fresh and aged biochar
- Complete 1 yr incubations & evaluate additional aging effects

Analyze competition between Cd and essential elements

#### REFERENCES

Ernst, WG 2012. Overview of naturally occurring Earth materials **\***CP1 raw and human health concerns. J of Asian Earth Sci, 59, 108-126 ACMS 2003. Managing cadmium in vegetables. Australian Cadmium Minimisation Strategy - CSIRO Land and Water.

#### ACKNOWLEDGEGMENTS

**Funding:** Science Without Borders/CAPES Scholarship; Henry A. Jastro Research Award; Cool Planet. **Biochar providers:** Pacific Biochar; Corigin; Pyrovac; Cool Planet; Community Power Corporation and Dixon Ridge Farms.