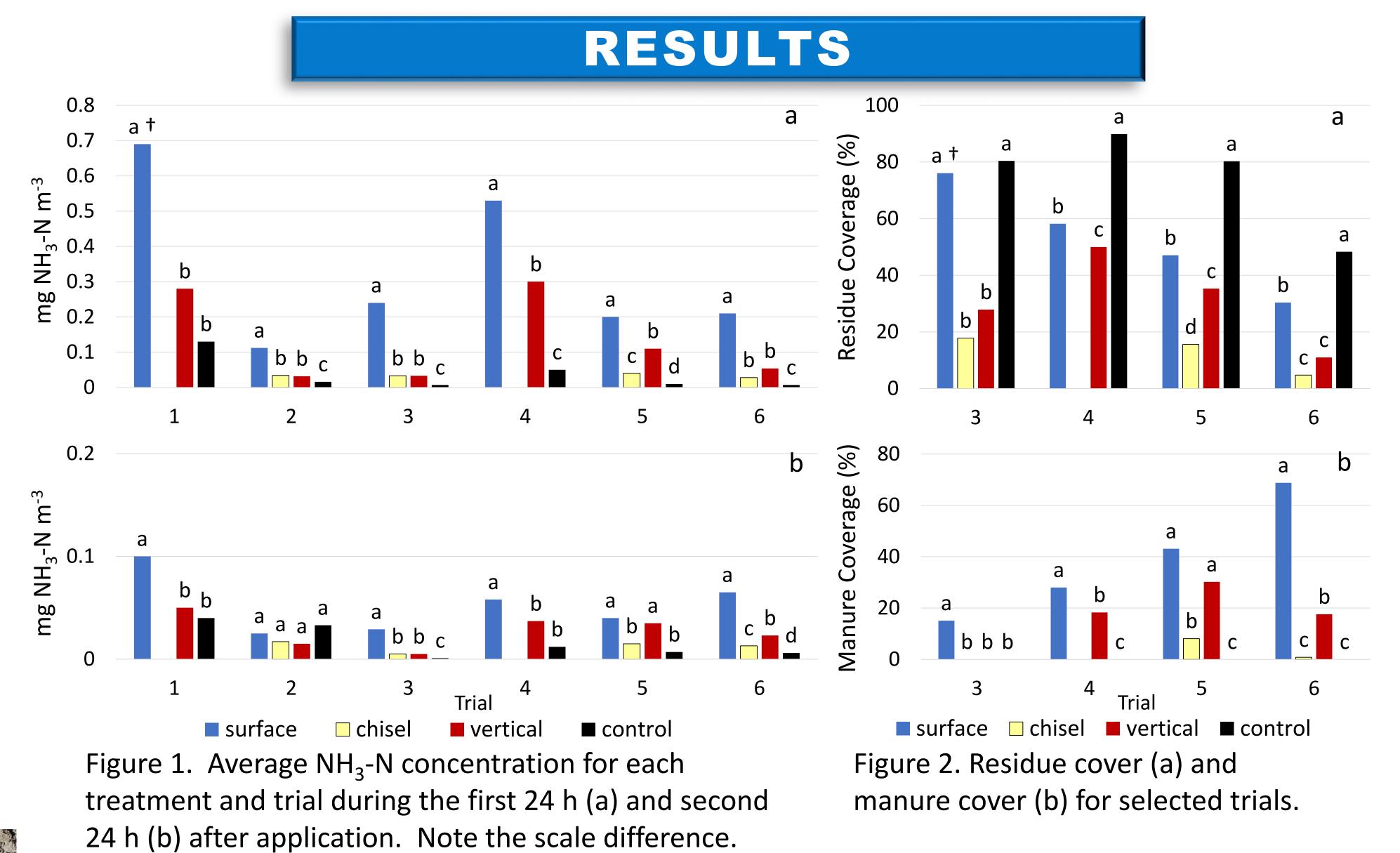


Vertical Tillage to Reduce Ammonia Volatilization and Conserve Residue after Dairy Manure Application

Jessica Sherman¹, William Jokela¹, Jason Cavadini²



COLLEGE OF AGRICULTURAL & LIFE SCIENCES University of Wisconsin-Madison

¹U.S. Dairy Forage Research Center, USDA Agricultural Research Service, Marshfield, WI; ²University of Wisconsin-Madison, Stratford, WI

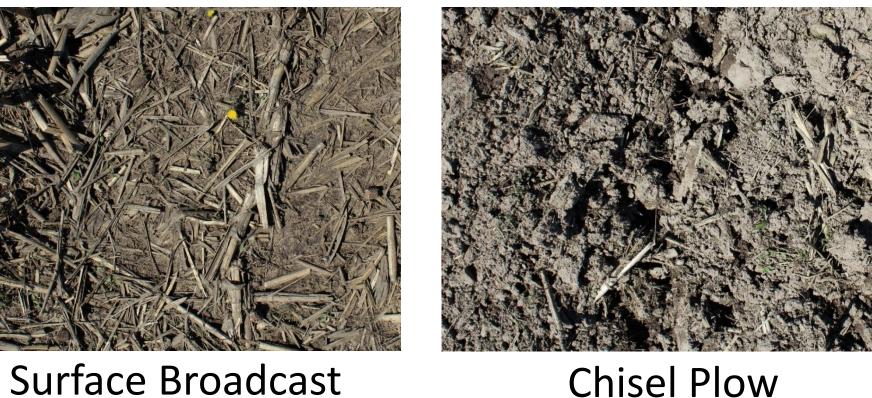
INTRODUCTION

The loss of nitrogen (N) in surface-applied dairy manure through volatilization as ammonia (NH_3) is a primary concern both economically and environmentally. Manure incorporation by conventional tillage has been shown to greatly reduce NH₃ losses, but the associated reduction in surface residue may lead to increased erosion. Vertical tillage, as a form of conservation

tillage, has become popular in recent years, and a number of implements with varied functionality are being marketed for this purpose. Their effectiveness for incorporating manure is not well researched however.

MATERIALS & METHODS

Field Site and Experimental Design


Univ. of Wisconsin/USDA-ARS Research Station, Stratford/Marshfield, in central WI.

- Withee silt loam (Aquic Glossudalfs); somewhat poorly drained, 1-3% slope.
- Six trials conducted Sept 2013 May 2016 in fields of harvested silage (Trials 1, 6), grain corn (Trials 4, 5), or oats (Trials 2, 3).
- Plots 9 x 24 m or 15 x 15 m arranged in randomized complete block design with 3 replicates.
- Statistical analysis by ANOVA using SAS-GLM. Multiple means comparison using Fisher's LSD (alpha=0.10).

Treatments

Liquid or solid manure was applied and incorporated within 5 min. where applicable.

- No manure control
- Surface Broadcast application Chisel Plow (CP) incorporated broadcast manure (15 cm tillage depth) • Vertical Tillage (VT) incorporated broadcast manure (Case IH 330 – 8 cm tillage depth (Trials 1-4) or Great Plains Turbo Max 1800 – 5 cm tillage depth (Trials 5-6))

Chisel Plow

Figure notes: + bars with the same letter within a trial date are not significantly different at alpha=0.1

Table 1. Manure composition, nutrients applied, and average weather data for each trial

		•	-		• •					
					Appl				Total	Wind
Trial	Date	DM †	ΤN	NH ₄ -N	Rate	Ν	NH ₄ -N	Temp	Rain	Speed
			- % -	_	Mg ha ⁻¹	— kg	ha⁻¹ —	°C	mm	$m s^{-1}$
1	25 Sept. 2013	28.6	1.80	0.35	95.3	484	94.1	13.9	0.0	2.55
C	2 + 1 + 2 - 2 - 1 = 4	1 17	c o c		га с	01 0	ГОО	1 С Л	0 0	1 71

Vertical Tillage Vertical Tillage (Great Plains Turbo Max 1800) (Case IH 330)

Field Measurements:

Case IH 330

- Ammonia was measured using Ogawa passive samplers (Ogawa USA Co.), 3 per plot positioned 30 cm above the ground, upwind samplers were also used to determine background levels.
- Samplers were collected after 24 h and a new set was deployed for a second 24 h. Fick's law was used to determine concentrations (Roadman et al., 2003).
- Manure was analyzed for DM, TN, and NH_{4} -N.
- Surface residue cover measured using photographs (2 per plot) and digital imagery analysis (SamplePoint software; Booth et al., 2006). Soil moisture was measured and soil samples (for pH, NH_{$_4}-N, and OM) were collected 6 per plot (20)</sub>$ cm depth).

2 July 2014 1.47 6.83 4.5 53.6 81.9 53.9 16.4 0.0 1.31 11 Aug. 2015 5.13 3.27 1.3 0.93 83.9 20.0 0.0 137 54.7 4 Nov. 2015 21.8 1.55 0.70 110 185 2.80 412 14.1 8.4 3 May 2016 8.70 3.05 1.5 181 89.2 7.1 69.6 9.40 2.03 17 May 2016 6.50 3.10 1.3 73.7 11.1 1.3 0.43 180 90.9

⁺ DM = dry matter, TN = total nitrogen

- Vertical tillage (VT) with Case IH 330 and chisel plow (CP) showed similar NH₃ concentration reductions (70-86% less than surface broadcast treatments (Trials 2 and 3)) in both first and second 24 h periods. Case IH consistently showed reductions compared to surface broadcast (44-86%) in both time periods (Trials 1-4) (Fig. 1).
- Less aggressive Great Plains VT implement (trials 5-6) while reducing NH₃ concentrations 46-75% in the first 24 h compared to surface broadcast, showed higher NH₃ concentrations than CP in the first (93-175% greater; NS in Trial 6) and second (77-133% greater) 24 h periods.
- The higher NH₃ loss in surface broadcast and VT treatments in Trials 1 and 4, particularly in the first 24 h, is likely due to minimal infiltration with high DM content manure (Fig. 1, Table 1).
- Residue cover with VT was statistically similar to CP in Trials 3 and 6, but was twice that of CP with Great Plains VT (Trials 5 and 6, though NS in 6; Fig. 2).
- Less aggressive Great Plains implement left more manure on soil surface than Case IH 330.

CONCLUSIONS

Weather conditions were measured at edge of field. Great Plains Turbo Max 1800

Incorporation reduced losses of NH₃ in both time periods in most cases and more aggressive VT can reduce NH₃ concentrations, but also residue cover, to near conventional tillage levels. The type of VT implement used can affect manure incorporation, residue coverage and amount of NH_3 -N conserved.

Email Contacts: Jessica.Sherman@ars.usda.gov Jokela@wisc.edu

Special Thanks

We would like to thank the following individuals for excellent work in assisting with the collection of this data: Ashley Braun and Tony Sternweis. We would also like to thank the employees at the Marshfield Agricultural Research Station.

References

Booth D.T., S.E. Cox & R.D. Berryman. 2006. Point sampling digital imagery with <u>'SamplePoint'</u>. Environmental Monitoring and Assessment 123: 97-108. Roadman, M.J., J.R. Scudlark, J.J. Meisinger, and W.J. Ullman. 2003. Validation of Ogawa passive samplers for the determination of gaseous ammonia concentrations in agricultural settings. Atmospheric Environment 37:2317-2325.