Adsorption and Precipitation of Cadmium Affected by chemical Form and addition Rate of Phosphate in Soils Having Different Levels of Cadmium

Hyun Ho Lee^a, Vance N. Owens^b, Sungkyun Park^c, Jiwoong Kim^c, and Chang Oh Hong^{a*}

^aDepartment of Life Science and Environmental Biochemistry, Pusan National University, 1268-05, Miryang, 50463, Korea ^bPlant Science Department and North Central Sun Grant Center, South Dakota State University, 1110 Rotunda Lane North, Brookings, SD 57007, USA ^bDepartment of physics, Pusan National University, Busan 46241, South Korea

27 600

Cd 3d (A)

6000 000 000

Previous study and Introduction

Research objectives

Application of phosphate (P) to Cd contaminated soils is the widely used remediation treatment to reduce the bioavailability of this metal. Many studies have been conducted on Cd immobilization with P materials in soil (Table 1).

Table 1. Selected reference on the phosphate affected mechanisms of cadmium immobilization

Primary mechanism for Cd immobilization	P materials	P addition rate	Cd concentration in soil	Reference
Adsorption (Adsorption of Cd by increase in pH and negative charge)	MPP	1,000 mg kg ⁻¹	10 mg Cd kg ⁻¹	Bolan, 2003
	CP, MP, RP, and SSP	500 g m ⁻²	5.81 mg kg ⁻¹	Biling, 2008
	CP, DAP, DPP, FP, F SP, MPP, and RP	1,600 mg kg ⁻¹	5.57 mg kg ⁻¹	Hong, 2010
Precipitation (Substitution of Ca in hydroxyapatite, precipitation of $Cd_3(PO_4)_2$ and $CdCO_3$ in elevated soil pH condition)	Hydroxyapatite	15,000 mg kg ⁻¹	6.0 mg kg ⁻¹	Boisson,1999
	DAP	2,300 mg kg ⁻¹	1,090 mg kg ⁻¹	McGowen, 2001
	DPP	1,600 mg kg ⁻¹	5.57 mg kg ⁻¹	Hong, 2014
	DPP	16,000 mg kg ⁻¹	5.57 mg kg ⁻¹	Kim, 2015
Not clear (probably precipitation and adsorption by charge of soil pH, formation of Ca- Cd-phosphate, and ion exchange, co-precipitation of insoluble Cd phosphate mineral)	СР	20 mg kg ⁻¹	18.6 mg kg ⁻¹	Chen, 2000
	RP	100,000 mg kg ⁻	295 mg kg ⁻¹	Basta, 2001
	Hydroxyapatite	50,000 mg kg ⁻¹	1.1 mg kg ⁻¹	Seaman, 2001
	MPP	24 mg kg ⁻¹	60 mg kg ⁻¹	Dheri, 2007
	DAP, Hydroxyapatit e, RP, and TSP	1,091mg kg ⁻¹	1.5 mg kg ⁻¹	Chen, 2007

Previous studies were conducted in various conditions such as *P materials, addition rates of P*, and *Cd concentrations* in soil (Table 1). Therefore, we assumed that these various conditions could govern adsorption and precipitation of Cd in soil. Although a number of studies have examined Cd immobilization by P in soils, determining exact mechanism of Cd immobilization in various conditions has not been examined in detail. Therefore, the objective of this study was to determine changes of Cd immobilization such as adsorption and precipitation in differently given conditions (form of inorganic P, addition rate of P, and Cd concentration in soil). The result of this study can help environmental scientist provide site specific-chemical immobilization technology for remediation of Cd contaminated soils with various conditions in the world.

Results, Discussion, and Conclusion

RP; Rock phosphate, FP; Fused phosphate, FSP; Fused and superphosphate, SSP; single superphosphate, DAP; Diammonium phosphate, MPP; monopotassium phosphate, DPP; Dipotassium phosphate, CP; calcium phosphate, MP; magnesium phosphate, TSP; triple-superphosphate

Above the studies have reported that P-induced immobilization of Cd in soils could be attri -buted to two primary factors: (1) Cd²⁺ adsorption to soil particles induced by increase in pH and negative charge of soil and (2) **precipitation of Cd** in a variety of inorganic phosphate forms, such as $Cd_3(PO_4)_2$ and $CdCO_3$. However, several studies simply evaluated effect of P on Cd immobilization and did not clearly address mechanism of Cd immobilization with P in depth.

Figure 1. Changes of (a); 1 M NH₄OAc extractable Cd concentration in Figure 2. Expended XRD patterns for soil having 1,000 mg Cd kg⁻¹ with soil, (b); pH of soil, and (c); negative charge of soil having different levels addition of 3,200 mg kg⁻¹ of DPP and MPP after 6 weeks of incubation. of Cd with addition of different rate of DPP (A) and MPP (B) after 6 weeks of incubation (the same letter on the bar is not significantly different a *P=0.05*).

Materials and method

Soil characteristics

An upland soil was selected for this study from experimental field of Pusan National University (35°30'07" N and 128°43'16" E) Miryang, South Korea.

Table 2. Selected physical and chemical **Properties of the studied soil**

Items	Concentration	
pH (1:5 with H_2O)	6.7	
Organic matter (g kg ⁻¹	17.6	
Total nitrogen (g kg ⁻¹)	1.05	
Available phosphate (142	
Exchangeable cation (cmol _c kg ⁻¹)	K	0.42
	Ca	4.76
	Mg	0.93
	Na	0.38
Cation extractable ca (cmol _c kg)	6.85	

Incubation test

- Phosphate materials
- K₂HPO₄, Dipotassium phosphate (DPP)
- KH₂PO₄, monopotassium phosphate (MPP)
- Phosphate application rate 0, 800, 1,600, and 3,200 mg P kg⁻¹ Incubation condition

Maintaining 70 % of water holding capacity and temperature for 25 °C during the 4 weeks

Cadmium – Equilibrium state analysis

• Input parameter - Soil pH (1:5 with H2O) - **lonic strength** : $1/2\sum_{i} Z_{i}$ (C. concentration, Z. valence) - Soluble cations : Cd^{2+} , Ca^{2+} , K^+ , Mg^{2+} , Na^+ , Al^{3+} , Fe²⁺, Fe³⁺, Zn²⁺, Mn²⁺, Si⁴⁺ - Soluble anions : PO_4^{3-} , CI^- , SO_4^{2-} , NO_3^{-} , CO_3^{2-} - Dissolved organic carbon (DOC)

Results of incubation study clearly demonstrated that chemical forms of P, addition rate of P,

