Effect of Different Way of Bottom Ash and Compost Application on Phytoextractability of Cadmium in Contaminated Arable Soil

Sung Un Kim¹ · Hyun Ho Lee¹ · Hye Jin Park¹ · Chang Oh Hong¹*

Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 627-706, Korea

Objective

Bottom ash (BA) contains considerable amounts of CaO and MgO, it could be a useful amendment to increase soil pH and to immobilize cadmium (Cd). Therefore, this study was conducted to determine the effect of application of BA and CP on Cd phytoextractability.

Materials & Methods

Cd immobilization (Incubation experiment)
- 500 g of soil was mixed in a plastic beaker
- Treatment
 - w/o BA and CP
 - w/ BA (3%, wt/wt) only
 - w/ CP (3%, wt/wt) only
 - w/ BA (3%, wt/wt) + CP (3%, wt/wt)

Cd phytoextractability (Field experiment)
- Lettuce (Lactuca sativa)
- Treatment
 - w/o BA and CP
 - w/ BA 30 Mg/ha only
 - w/ CP 30 Mg/ha only
 - w/ BA 30 + CP 30 Mg/ha

Results

Table 1. Concentration of Cd fractions in soil added with control, BA, CP, and BA+CP under incubation condition at 25°C for 5 weeks

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cd fractiona (mg kg⁻¹)</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.33⁵⁻³</td>
<td>2.70a</td>
<td>2.12⁻¹</td>
<td>0.61⁻¹</td>
<td>6.55⁻¹</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>0.98⁻¹ˢ</td>
<td>2.33⁻¹</td>
<td>2.26⁻¹</td>
<td>0.63⁻¹</td>
<td>6.05⁻¹</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>0.92⁻¹ᵉ</td>
<td>1.10⁻¹</td>
<td>4.00⁻¹</td>
<td>0.67⁻¹</td>
<td>6.06⁻¹</td>
<td></td>
</tr>
<tr>
<td>BA+CP</td>
<td>0.26⁻¹</td>
<td>0.84⁻¹</td>
<td>3.28⁻¹</td>
<td>1.39⁻¹</td>
<td>5.77⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

bValues with same letter within a column are significantly different at p = 0.05.

Table 2. Correlation coefficients for relationship between Cd fractions and chemical properties of soil added with control, BA, CP, and BA+CP under incubation condition at 25°C for 5 weeks

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Cd fraction</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-0.958***</td>
<td>-0.975***</td>
<td>0.816**</td>
<td>0.504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative charge</td>
<td>-0.983***</td>
<td>-0.970***</td>
<td>0.888***</td>
<td>0.506</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions

Incubation experiment clearly demonstrated that reduced extractability of Cd with addition of BA, CP, and BA+CP was mainly attributed to Cd adsorption by increase in pH and negative charge of soil rather than precipitation of Cd as Cd minerals such as CdCO₃ and Cd(OH)₂. Single application of BA and CP and combined application BA and CP were effective to reduce Cd uptake by lettuce, but there was no additional benefit with combined application compared with single application. However, combined application of BA and CP was more effective to increase fresh yield of lettuce than single application of BA. Therefore, combined application of BA and CP might be a good management practice in Cd contaminated arable soil in the view point of Cd phytoavailability and crop productivity.