

compostion. The FEE were submited to xylanase (Bailey et al. 1992) and endoglucanase (Wood and Bhat 1988) activities determined at 39°C and pH 6.6. The xylanase activity was 102.5 IU and

Material and Methods

The procedures of this experiment was approved by the Internal Commission for Ethics in Experimentation with Animals (CEUA – CENA/USP 014/2016). Forages samples were analyzed for chemical

enteric methane (CH_4) emissions. In order to increase fiber degradability and energy utilization efficiency from low quality forages, exogenous fibrolytic enzymes have been studied. The aim of this

study was to evaluated the effects of increasing dose levels of fibrolytic enzymes extract (FEE) produced by Trichoderma reesei using sugar-cane coproduct as substrate, on in vitro organic matter

endoglucanase was 1.45 IU. To determine the total gas and CH_4 production, substrate degradability, and fermentation parameters the *in vitro* gas production technique was used according to Bueno et al. (2005) in a 4 x 3 + 1 factorial arrangement with four dose levels of FEE (5, 50, 500, and 5000 L), three substrates (*Cynodon* spp., *Panicum maximium*, and *Cenchrus ciliares* L.) plus one control (without enzymes addition). Means were compared by Tukey's test (p<0.05) using the SAS software.

Figure 1 – Enzyme preparation and in vitro gas production technique: inoculation using inoculum from Santa Ines sheep, incubation at 39°C for 24 hours, pressure reading, organic matter degradability and methane quantification.

Results

Table 1 – In vitro total gas and CH_4 production and nutrient degradability of tropical forages with increasing dose levels of fibrolytic enzymes extract.

degradability, fermentation parameters, total gas and CH_4 production of tropical forages.

Cynodon spp.	Dose levels (µL)						
	Control	5	50	500	5000	S.E.M.	p-Value
GP (mL/g TDOM)	29.97°	36.66 ^b	35.89 ^{bc}	36.67 ^b	47.71ª	1.43	<.0001
TDOM (g/kg)	348.52 ^c	353.01 ^{bc}	350.65 ^c	365.62 ^b	380.47ª	3.55	<.0001
CH ₄ (mL/g TDOM)	1.09 ^b	1.65 ^b	1.44 ^b	1.97 ^b	3.05 ^a	0.21	<.0001
Panicum			Dose lev	vels (µL)			

Table 2 - In vitro fermentation parameters of tropical forages with increasing dose levels of fibrolytic enzymes extract.

	Dose levels (µL)						
Cynodon spp.	Control	5	50	500	5000	S.E.M.	p-Value
C4 (mmol L ⁻¹)	6.36 ^b	7.77^{a}	7.59 ^{ab}	8.18 ^a	8.32ª	0.31	0.0012
C2:C3	4.53 ^a	3.87 ^b	4.00 ^b	3.96 ^b	4.01 ^a	0.10	<.0001
pН	6.82 ^b	6.83 ^{ab}	6.87 ^a	6.87^{a}	6.72 ^c	0.01	<.0001

Panicum

Dose levels (µL)

	Control		50	500	5000		X /- I
maximum	Control	5	50	500	5000	S.E.M.	p-Value
GP (mL/g TDOM)	35.03 ^c	39.70 ^{bc}	41.95 ^b	39.87 ^{bc}	55.83ª	1.58	<.0001
TDOM (g/kg)	419.49 ^b	403.74 ^b	403.03 ^b	408.21 ^b	450.24 ^a	6.99	<.0001
CH ₄ (mL/g TDOM)	1.08 ^b	1.25 ^b	1.37 ^b	1.66 ^b	2.91 ^a	0.16	<.0001
Cenchrus ciliares Dose levels (µL)							
L.	Control	5	50	500	5000	S.E.M.	p-Value
GP (mL/g TDOM)	28.20 ^c	32.64 ^{bc}	32.94 ^{bc}	39.19 ^b	47.42 ^a	1.81	<.0001
TDOM (g/kg)	337.81 ^b	317.51 ^b	333.28 ^b	343.37 ^b	375.46 ^a	6.79	<.0001
CH ₄ (mL/g TDOM)	1.11 ^c	1.61 ^{bc}	1.76 ^{bc}	2.21 ^b	3. 11 ^a	0.22	<.0001

GP = gas production; OM = organic matter; TDOM = truly degraded organic matter; CH₄ = methane production; S.E.M. = standard error of the mean. Means with different superscript letters within a same row differ at p<0.05 (Tukey's test).

maximum	Control	5	50	500	5000	S.E.M.	p-Value
C4 (mmol L ⁻¹)	5.39 ^b	7.40^{a}	7.74^{a}	8.09 ^a	7.39 ^a	0.33	<.0001
C2:C3	4.95 ^a	4.10 ^b	4.16 ^b	4.05 ^b	4.25 ^b	0.16	0.0004
pН	6.90 ^a	6.88 ^a	6.85 ^{ab}	6.87 ^{ab}	6.82 ^b	0.02	0.0046
Cenchrus ciliares Dose levels (µL)							
L.	Control	5	50	500	5000	S.E.M.	p-Value
C4 (mmol L ⁻¹)	5.68 ^b	7.45^{a}	7.70 ^a	9.01 ^a	7.51 ^a	0.38	<.0001
C2:C3	4.63 ^a	4.14 ^{ab}	4.15 ^{ab}	3.88 ^b	4.16 ^{ab}	0.16	0.0251
pН	6.81 ^b	6.85 ^b	6.95 ^a	6.82 ^b	6.83 ^b	0.01	<.0001

C4 = butyrate; C2:C3 = acetate-to-propionate ratio; S.E.M. = standard error of the mean. Means with different superscript letters within a same row differ at p<0.05 (Tukey's test).

Acknowledgments

Conclusion

These results indicated that the use of fibrolytic enzymes produced through agricultural resources can be a reliable way to improve degradability of low quality forages, contributing to the sustainability

and intensification of livestock production in tropical countries.

References

Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. *Journal of Biotechnology.*, 23, 257–270, 1992.

Bueno, I.C.S.; Cabral Filho, S.L.S.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.S.S.; Abdalla, A.L. Influence of inoculum source in a gas production method. *Animal Feed Science and Technology.*, **123–124**, 95–105, 2005.

Wood, T.M.; Bhat, K.M. Methods for measuring cellulase activities. In: Wood, W.A. & S.T. Kellogg (eds.), *Methods in Enzymology.*, Methods in Enzymology. Elsevier, London. pp. 87–

112, 1988.

