
Liebig's Law of the Minima:  
Interpreting N Response in 2 Dimensions 

These figures illustrate two perspectives of the model, generated from the same fit object in R:  

1) “side-on”, the conditional effect of PL at each possible level of C:N ratio, showing the linear-plateau func-
tional relationship up to Yieldmax and an envelope of the response space as a shaded region 

2) “top-down”, the frontier of minimum combinations of PL and C:N ratio that achieve Yieldmax, along with 
yield isoquant contour lines along the effective response space 

Each is shown for 6 site-years, with the observed data for context. 

Introduction 
Linear-plateau models ( ) for crop yield are simple to interpret 
and biologically defensible. However, extending these models to two 
sources of a nutrient across a response surface is challenging both to fit 
computationally and to visualize conceptually.  

Model-fitting with existing software is either sensitive to starting condi-
tions, slow to converge, difficult to implement, or all of the above.  

Figures plotted in 3D have perceptual challenges due to the constraints 
of axonometric projections and non-interactivity on the printed page. 
Flattening figures to present marginal effects of one variable at levels of 
another creates an implicit hierarchy. Choices must be made to balance 
loss-of-information with interpretability. 

Brian W. Davis1, Steven B. Mirsky2, John T. Spargo3, 
Hanna J. Poffenbarger4, Michel A. Cavigelli2,  

Brian A. Needelman1 

1University of Maryland  
2USDA-ARS  

3Pennsylvania State University 
4Iowa State University 

Data 
Corn yield was measured following a factorial of 6 seeding rates of two 
cover crop species in replacement series (cereal rye kg ha-1; 
hairy vetch kg ha-1) across 5 rates of subsurface-banded poultry 
litter (SSB PL kg PAN ha-1). The strip-plot experiment was 
conducted on two sites (Organic, Conventional; 3 replicate blocks each) 
and replicated in three years (2012, 2013, 2014). Cover crop mixtures 
were separated and all residues combusted to compute a net C:N ratio. 

Model fit and interpretation 

Software packages 
nlme::nlme() 
Advantages 

 Familiar syntax to linear model fitting in R 

 Allows non-arithmetic functions in formula; 
e.g. pmin(), SSasymp() 

 No additional software needed 

 Once starting values are optimized and  
correct scaling applied, fitting is relatively fast 
(seconds to minutes) 

Challenges 

 Very sensitive to scaling of Y, X1, and X2;  
guess-and-check iteration 

 Predictions, coefficients must be back-scaled 

 Sensitive to manually specified starting values 
to achieve convergence 

 Must be parameterized such that βi ~ N(µ, σ) 

Best use: Exploratory analysis 

  
brms::brm() 
Advantages 

 Somewhat familiar syntax to lm/lme in R 

 Robust performance with specified priors  
instead of starting values 

 Less sensitive to scaling of Y, X1, and X2 

 βi can be parameterized to any distribution 

Challenges 

 Must install a C++ compiler and Rtools 

 Functional relationships must be approximat-
ed using only basic arithmetic for Stan and C 

 Compiling the model is slow (minutes) 

 Fitting the model is even slower  
(minutes to hours) 

 Limited feasibility of iterating over multiple 
candidate models 

Best use: Inference 

  
library(tidyverse); library(mvnfast) 
 
rmvn(n = 10^6,   
     mu = fixef(fit.object),  
     sigma = vcov(fit.object)) %>%  
  as_data_frame() %>%  
  mutate(gamma0 =  beta3/beta1,      
         gamma1 = -beta2/beta1,      
         ymax   =  beta0+beta3) %>%  
  gather(key = term, value = est) %>%  
  group_by(term) %>%  
  summarise_all(funs(mean, sd)) 
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Monte Carlo simulation 
Regardless of the package used, methods exist 
for both to extract model components, namely 
the means and variance-covariance matrices.  

Coefficient estimates can be then generated 
from a joint-normal distribution. Alternately, 
brm fit objects store a population of posterior 
samples that can be used.  

These can be used to derive the Gaussian-ratio-
distributed frontier parameters γ0 & γ1 and  
account for covariance in the normally-
distributed plateau parameter, Yieldmax = β0+β3. 

Code repository 
To see annotated code for this analysis, citations, and 
an interactive 3D version of these figures, visit:  
 

github.com/brianwdavis/liebig 

Median parameter  
estimates;  
50% and 95%  
credible intervals 

Conclusions 
Each non-linear model-fitting software package has its respective advantages and challenges, and it’s 
ultimately helpful to be familiar with both for understanding functional relationships within your 
data. The Monte Carlo method we present to derive parameters of biological interest has applications 
beyond yield-response curves; however, it’s important to observe the empirical distributions of such 
parameters, as they are generally not normal.  

 

The figure showing the effect of PL conditional on C:N ratio has a more familiar appearance, and is 
more straightforward to interpret qualitatively. However, the figure showing the contours of yield 
across the response space illustrates quantitatively the relationship of interest: relative trade-off 
between the two inputs. Each is appropriate for different audiences. The 3D figure shown on the code 
repository for this poster helps bridge the gap between the two approaches, but is neither as intuitive 
as the first nor as objective as the second. 


