

# Influence of Harvest Date on Pennycress Seed Yield and Quality Julija A. Cubins<sup>1</sup>, M. Scott Wells<sup>1</sup>, Maninder K. Walia<sup>2</sup>, Frank Forcella<sup>3</sup>, Gregg A. Johnson<sup>4</sup>, Roger L. Becker<sup>1</sup>, and Russell W. Gesch<sup>3</sup>

<sup>1</sup>University of Minnesota, Twin Cities, <sup>2</sup>University of Minnesota, Morris, <sup>3</sup>USDA-ARS, Morris, MN, <sup>4</sup>University of Minnesota, Waseca

## Introduction

**Opportunity:** Establish winter cover crops in Minnesota that maximize the short growing season and contribute to farm profitability.

- Temporal intensification can be used to integrate winter-hardy crops after summer annual crops have been harvested and utilize end-ofseason growing degree units.<sup>5</sup>
- Winter annual crops are able to capture much of the growing season not utilized by a traditional corn (*Zea mays* L.) – soybean (*Glycine max* L.) rotation.<sup>6</sup>
- Early season pennycress (Thlaspi arvense L.) harvest allows a summer annual double crop to be planted, and increases the overall amount of seed harvested in a single growing season.<sup>7</sup>
- Pennycress oil can be used as a source of biodiesel. This can increase annual farm income due to overall greater seed production.<sup>8</sup>

**Challenge:** Pennycress is prone to seed shatter at or past physiological maturity. Harvest losses can exceed 60% if proper timing and practices are not established. <sup>9</sup>

# Objectives

- Evaluate the effect of multiple June harvest dates on pennycress grain moisture and yield.
- 2. Determine oil content at each June harvest date.

# Materials and Methods

#### Design:

- Two locations: Morris and Rosemount, MN
- Randomized complete block design
- Four replications

#### Management:

- Planted 16-Sep, 2016 (Morris, MN) and 27-Sep, 2016 (Rosemount, MN)
- 8 harvest dates in Jun 2017
- Treatments were hand harvested

## Analysis:

• The REG procedure in SAS and the AIC were used to aid in model selection comparing linear, quadratic, and linear plateau models <sup>10, 11</sup>











**Figure 4.** Predicted pennycress oil content at harvest in response to sampling date in Morris and Rosemount, MN (2017).



## **Pennycress Harvest Parameters:**

• Pennycress grain yield and oil content is optimized between 50-60% moisture.

Discussion

- Harvest dates driven by timing of physiological maturity may lead to an increase in post-harvest costs.
- To ensure maximum grain yield and oil content, genetic improvements or harvest aids will be necessary in the future.
- Environmental conditions and equipment can impact grain loss at low grain moisture.
- Moisture content low enough to facilitate harvest without having to dry seed postharvest is associated with seed loss.
- As silicles mature, fragility increases.

### **Pennycress Oil Production:**

- Oil content plateaued as grain yield reached maximum value.
  - Later harvest dates did not result in changes to oil content.



MN (2017).

# Conclusions

Pennycress harvest date should be chosen carefully based on silicle maturity in order to minimize grain loss.

Mid-June harvest dates are the most productive in terms of grain yield and oil content.

- Grain yield was maximized between 12-Jun and 15-Jun at both locations.
- Oil content plateaus at the same time that harvest losses increase.

Given that oil content remains consistent, maximizing grain harvest is the most important factor in choosing pennycress harvest date.

## References

<sup>5</sup>Heaton et al., 2013, Biofuels, Bioprod. and Bioref. 7:702-714. <sup>6</sup>Phippen and Phippen, 2012, Crop Sci. 52:2767-2773. <sup>7</sup>Johnson et al., 2015, Agron. J. 107:532-540 <sup>8</sup> Moser et al., 2009, Energy and Fuels, 23:4149-4155. <sup>9</sup>Carlson et al., 2018 (Unpublished).

<sup>10</sup>Burnham et al., 2002, J. Prod. Agric. 2(1):32-36. <sup>11</sup>Version 9.4; SAS Institute Inc., Cary, NC <sup>12</sup>USDA-ARS Swan Lake Research Center Weather Station

<sup>13</sup>Rosemount Research and Outreach Center Weather Station







pennycress, Rosemount, MN (2017).