NC STATE

& GENETICS

TURFGRASS BREEDING

Greta Rockstad¹, Robert Austin¹, Xingwang Yu¹, Esdras M. Carbajal¹, Jeffrey C. Dunne¹, Grady L. Miller¹, David Jespersen² and Susana R. Milla-Lewis¹ (1) Crop and Soil Sciences, North Carolina State University, Raleigh, NC, (2) Crop and Soil Sciences, University of Georgia-Griffin, Griffin, GA

Background

- Of the warm-season grasses, St. Augustinegrass has one of the lowest drought resistances, similar to that of the cool-season grass tall fescue (1)
- Collecting data on drought stress traits such as green cover (%) and NDVI often requires different passes across plots using both a lightbox and a normalized difference vegetation index (NDVI) meter
 - Because drought stress progresses quickly in the summer heat, collecting data on as many traits in as little time is imperative to reduce temporal variation
- Unmanned aerial vehicles (UAVs) have seen increasing use for phenotyping in other crops, but their use in turfgrass is still somewhat limited
- A strong correlation between aerial and ground NDVI in both bermudagrass and zoysiagrass was observed (2), but no such study has been conducted in St. Augustinegrass

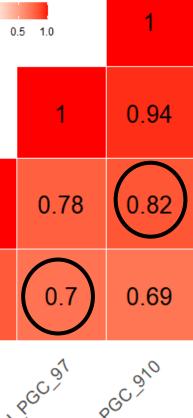
OBJECTIVES

- Evaluate the relationship between ground-based and aerial-based drought stress evaluation methods in St. Augustinegrass
- Develop an image processing pipeline for warm-season turfgrass UAV imagery 2)

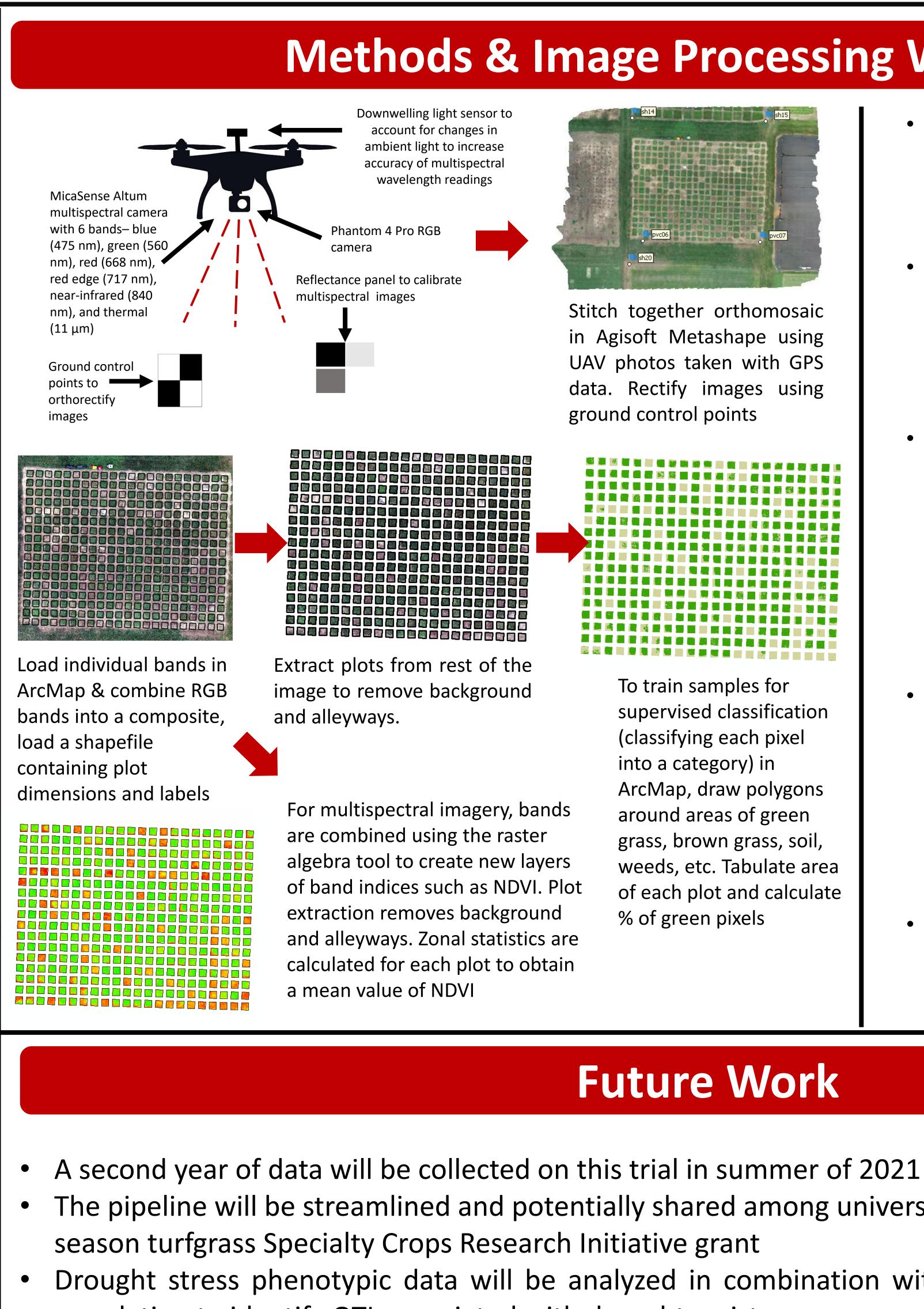
Preliminary Results

Raleigh Correlation U_NDVI_911 U_NDVI_910 -1.0 -0.5 0.0 0.5 1.0 U_NDVI_98 -1.0 -0.5 0.0 0.5 1.0 U_NDVI_97 U_NDVI_93 NDVI NDVI_910 NDVI_911 NDVI_98 NDVI_97 NDVI_93 U_PGC_911 U_PGC_910 U_PGC_98 U_PGC_93 U_PGC_97 PGC PGC_911 PGC_910 PGC_98 PGC_93 PGC_97 260° 260° 260° 260° 260° 260° 290°°' 20°°'' 120°°'

Figure 1. Pearson correlation coefficients between NDVI and green cover % (PGC) data collected both aerially and on the ground across three dates and two locations. Correlations of most interest, those within a date between aerial and ground data, are circled. Note the label indicates the date the data were taken (e.g. 910 = 9/10/20), and a preceding U indicates data were taken with a UAV.


Jackson Springs

Evaluation of UAV-Based Imagery for Drought Stress Traits in St. Augustinegrass



The extent of turfgrass plots at the Jackson Springs, North Carolina research station where drought stress quickly progresses in the sandy soils

- First year of data showed strong, positive correlations between aerial and ground data, similar to those seen in bermudagrass and zoysiagrass
- Across locations, higher correlation coefficients were observed for PGC than for NDVI
- Jackson Springs correlations were lower overall, possibly due to data extraction method differences

10.3733/ucanr.8395.

- http://www.rstudio.com/
- 24277-4, https://ggplot2.tidyverse.org http://www.jstatsoft.org/v21/i12/.

Methods & Image Processing Workflow

The pipeline will be streamlined and potentially shared among universities participating in the warm-Drought stress phenotypic data will be analyzed in combination with genotypic data on the mapping population to identify QTL associated with drought resistance

References

Harivandi, M.A., J. Baird, J. Hartin, M. Henry, and D. Shaw. (2009). Managing Turfgrasses during Drought. University of California Division of Agriculture and Natural Resources Publication 8395. doi:

2. Zhang, J., S. Virk, W. Porter, K. Kenworthy, D. Sullivan, et al. 2019. Applications of unmanned aerial vehicle-based imagery in turfgrass field trials. Front. Plant Sci. 10: 1–12. doi: 10.3389/fpls.2019.00279. Karcher D.E., C. Purcell, M. Richardson, L. Purcell and W. Kenneth. 2017. New Java Program to Rapidly Quantify Several Turfgrass Parameters from Digital Images. CSSA Oral

presentation. https://scisoc.confex.com/crops/2017am/webprogram/Paper109313.html. 4. RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-

Wickham H (2007). "Reshaping Data with the reshape Package." Journal of Statistical Software, 21(12), 1–20. MUMARTING COMPANY COMPANY COMPANY COMPANY COMPANY COMPANY COMPANY

- A 'Raleigh' x 'Seville' mapping population of 115 individuals organized in an RCBD with 3 reps was used to measure drought stress at Jackson Springs and Raleigh, NC
- All data was collected within 2 hours of solar noon. Data was taken 3 times at each location, but one date was dropped from the Jackson Springs location due to poor quality UAV data
- Green cover % (PGC) was measured
- On the ground: using a lightbox and analyzed using TurfAnalyzer (3)
- Aerially: using a Phantom 4 Pro camera (SZ DJI Technology Co., Ltd) flying at 30 ft AGL with 75% image overlap and processed in Agisoft Metashape (Agisoft LLC) and ArcGIS (Esri)
- NDVI was measured
- On the ground: using a GreenSeeker handheld (Trimble Inc.)
- Aerially: using a Micasense Altum multispectral camera flying at 52 ft AGL with 75% image overlap and processed similarly to PGC
- Pearson correlations were calculated in R Studio (4) and heatmaps were produced using the packages ggplot2 (5) and reshape2 (6)

Acknowledgements

NIFA

This work is supported by a grant from the NC State University Center for Turfgrass Environmental Research and by Specialty Crop Education and Research Initiative grant 2019-51181-30472 from USDA-NIFA.