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Abstract
Green plants absorb a photosynthetically active radiation (PAR) spectral region and use it as a source of energy in photosynthesis. High throughput phenotyping of the green vegetation using proximal sensors has become an important tool to quantify the biophysical characteristics of the turfgrass. A total of 50 hybrid 
bermudagrass (Cynodon dactylon x C. transvaalensis) accessions were grown in the greenhouse from stolon cuttings in 36 well flats and arranged in three replicates each with 12 plugs. RapidScan CS‐45, a height independent active crop canopy sensor that measures crop reflectance at 670 nm, 730 nm, and 780 nm 
was used to collect spectral data. Six indexes related to canopy photosynthetic area and chlorophyll content were calculated. Significant variation was observed among the genotypes in all the indexes. The correlation and selection indexes analyses using the indexes as selection differentials identified superior 
genotypes and validated the practical application of the technique in the turf aesthetic value assessment.

Background
Considerable genetic variability exists among bermudagrass germplasm for turf characteristics. However, 
conventional selection technique based on visual evaluation can be slow and inefficient and the precise 
variations of genotypes often remain concealed. Phenomics has shown to greatly aid in identifying genotypes 
carrying superior traits, increasing selection efficiency, and shortening the time period for cultivar 
development (Lobos and Hancock, 2015).
High throughput phenotyping using remote and proximal sensing techniques are increasingly used to capture 
agronomic and physiological traits associated with adaptation, yield potential, and stress tolerance traits in 
plants (Cabrera‐Bosquet et al., 2012). 
Spectral reflectance of plants is closely associated with absorption at certain wavelengths across the 
electromagnetic spectrum that are linked to specific characteristics or plant conditions (Lobos and Hancock, 
2015). Hence, selection based on spectral indexes in plant breeding is expected to improve genetic gains for 
different important traits.
This experiment was conducted under controlled environments to measure the genetic variation of 50 
bermudagrass genotypes using RapidScan CS‐45, a height independent active crop canopy sensor that 
measures canopy reflectance at 670 nm, 730 nm, and 780 nm. 
To identify superior genotypes, multi‐trait selection differential based on six different indexes that were 
calculated to measure canopy photosynthetic area and chlorophyll content.

Materials and Methods
Fifty turf type bermudagrass genotypes developed at Oklahoma State University were grown from stolon 
cuttings in 36 well flats in the greenhouse at USDA‐ARS, U. S. Arid‐Land Agricultural Research Center. The flats 
were  arranged in three replicates of 12 plugs each.  
Canopy reflectance measurements were collected using a Crop Circle RapidScan CS‐45 (Holland Scientific, 
Lincoln, NE, USA).  Spectral reflectance data at 670 nm, 730 nm, and 780 nm bands were recorded and six 
indexes were calculated (Table 1).
Correlation among the indexes and multi‐trait genotype‐ideotype distance index (MGIDI) (Olivoto and 
Nardino, 2021) analyses were conducted to identify superior genotypes. 

Table 1: The formulae and references of different spectral reflectance indexes used in these study.

Spectral reflectance indices Formula References

Normalized difference vegetation index (NDVI) (R780 ‐ R670)/(R780 + R670) Raun et al., 2001

Normalized difference red edge index (NDRE) (R780 ‐ R730)/(R780 + R730) 
Gitelson & 
Merzlyak, 1994

Normalized difference vegetation index‐Red‐Red edge 
(NDRRE)

(R730 ‐ R670)/(R730 + R670)  Gitelson, et al., 2002

Canopy chlorophyll content index (CCCI) NDRE/NDVIR Long et al., 2009

The MERIS terrestrial chlorophyll index (MTCI)  (R780 ‐ R730)/(R730 ‐ R670) Dash and Curran, 2004

The chlorophyll index using red edge (CIRE) (R780/R730) ‐1 Gitelson et al., 2005

Fig. 3: Genotype 
rankings for MGIDI. 
The selected 
genotypes based on 
this index are 
shown in red (A) 
and the strengths 
and weaknesses 
view of the selected 
genotypes (B).
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Figure 2: Scatter plots, frequency distributions, and 
relationships among the six indexes used to evaluate 50 
turf type bermudagrass genotypes for genetic variation 
based on canopy reflectance at different wavelengths.

Figure 1: Density heatmap of the indexes used to 
evaluate 50 turf type bermudagrass genotypes.
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Principal component analysis using MGIDI revealed two factors accounting for a total of 99.8% 
(PC1=67.3% and PC2 =32.5%) of the variations among the genotypes. 
Factor analysis using indexes as selection differentials selected OSU2102, OSU2120, OSU2053, 
OSU2108, OSU2039, OSU2123, OSU2075, OSU2015, OSU2118, and OSU2124 as superior over the 
others (Fig. 3A). 
Factors analysis to the MGIDI indicated that factor 1 contributed more towards the selection of 
OSU2102 (Fig. 3B). Factor 2 (MTCI and CCCI) contributed mainly for the selection of OSU2053 and 
OSU2075. Both factors contributed towards the selection of OSU2039, OSU2015, and OSU2118. 

Indexes density heatmap showed MTCI has wide range, while NDRE and CCCI have narrow range than 
others (Fig. 1). Statistically, highly significant differences were observed among the genotypes for all 
the indexes.
Performance analytics revealed high similarity between NDRE & CIRE (Fig. 2). NDVI was also highly 
correlated with NDRRE, NDRE and CIRE. NDRE is also highly correlated with NDRRE.
Similarly, MTCI and CCCI are highly correlated, while both were weakly or negatively correlated with 
the rest of the indexes used in this study.
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