

DEPARTMENT OF PLANT AND SOIL SCIENCES

Genomic diversity in bermudagrass (*Cynodon* **spp.)**

Lovepreet Singh¹, Yanqi Wu², James D. McCurdy¹, Barry R. Stewart¹, Brian S. Baldwin¹, Marilyn L. Warburton³, Hongxu Dong¹ ¹Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762 ²Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 ³USDA ARS Western Regional Plant Introduction Station, Pullman, WA 99164

Introduction	Results					
Cynodon dactylon var. dactylon (tribe Cynodonteae, subfamily Chloridoideae), a.k.a bermudagrass) is a warm-season perennial	Table 1 . Diversity parameters for sub populations and germplasm panel.				ations and	40-
grass used as turfgrass, forage, and for soil stabilization.	Cluster	SegSites	Pi (π)	Theta (θ)	Tajima's D	
bermudagrass (<i>Cynodon</i> spp.) is a hindrance for efficiently using the germplasm in the development of new bermudagrass cultivars.	Cluster 1	35343	0.21803	0.2114	0.11538	$ \begin{array}{c} (Cluster) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
Previous genetic studies in bermudagrass have largely relied on single bi-parental or selfed populations and on small germplasm collections.	Cluster 2	25907	0.22819	0.22265	0.11522	$\begin{bmatrix} \tilde{c} \\ \tilde{c} \\ 0 \end{bmatrix}$
To understand genetic diversity at genus level, a germplasm panel of 206 accessions was assembled for this study and genotyped.	Cluster 3	28240	0.17523	0.19011	-0.30685	
Objective	Cluster 4	21782	0.18242	0.1872	-0.11822	-40 -20 0 20 -20 0 20 40 PC1 (15.6 %) PC2 (10.1 %)
To assess genetic diversity, population structure, and relatedness among members of the bermudagrass germplasm panel.	Overall	37496	0.27197	0.1943	1.37043	Fig. 1 . Principal component analysis across the germplasm panel. Variance explained by each PC is in parentheses.
Materials and Methods	Table 2 . Pairwise Fst value among four subpopulations.				opulations.	Cluster1 Cluster2 Cluster3 Cluster4
A diversity panel consisted of 193 common bermudagrass and 13 African bermudagrass accessions was assembled (Photo 1).		Clu	uster 4	Cluster 1	Cluster 2	
DNA sequencing libraries were prepared following the genotyping- by-sequencing (GBS) protocol with AneKI enzyme (Fishire et al.	Cluster 1 0.3341					0.5 Agrees
2011) and sequenced with 101 bp single end reads on an Illumina Novaseq SP platform.	Cluster	2 0.	.3437	0.2016		
Raw DNA sequencing data were processed with customized Perl scripts. SNPs were then called <i>de novo</i> using the UNEAK pipeline (Lu et al., 2013) of TASSEL 3 standalone.	Cluster	3 0.	4553	0.3638	0.2336	້ຳ ຳ ວ່າ ຈຳ
Population structure was assessed by principal component analysis (PCA) and by running ADMIXTURE software for K values from 1 to		PLOSTAG PLOSTAG PLOSTAG PLOSTAG PLOSTAG PLOSTAG PLOSTAG PLOSTAG	25128714 22616214 09612914 P1287154 P1287155 P1287155 P12822249 P12822249 P1287255 A12434 P1286584 P1286584	MSUIGS MSUIGS DESOVERY DESOVERY DESOVERY PERSIS PERSIS PERSIS PERSIS PERSIS PERSIS PERSIS PERSIS PERSIS PERSIS		revealed four subpopulations in the germplasm panel.
10.	The second se	Provide a second			and the second s	Results Summarv

- Identity by state (IBS) matrix was calculated in TASSEL and a neighbor joining (NJ) tree was visualized in Interactive Tree Of Life (iTOL) v5.
- Genetic diversity parameters were calculated in TASSEL 5.0 and Fst statistic was calculated by using adegenet R package (Table 1).

Photo 1. A glimpse of diverse accessions in this germplasm panel which have been genotyped.

Fig. 3. Phylogenetic tree exhibiting relatedness and evolutionary relationship of accessions in the germplasm panel. These 206 Cynodon accessions are colored according to the four clusters which are obtained from ADMIXTURE results.

- ✤ A total of 600,380,494 reads were generated, with an average of 2.9 million reads per sample, and 537,127,057 reads were retained after trimming. ✤ A total of 37,496 raw SNPs were obtained with minor allele frequency of 0.05, minimum call rate of 0.5.
- Population structure analysis using ADMIXTURE revealed four subpopulations in this germplasm panel, and this was found to be consistent with principal component analysis (PCA) and phylogenetic analysis results (Figs. 2,3).
- Principal component (PC) analysis indicted that PC1, PC2, and PC3 explained 15.6%, 10.1%, and 3.8% of the genetic variation in the panel, respectively (Fig. 1). Overall composition and cause of four subpopulations:
 - Cluster 1: Admixture of accessions from different continents
 - Cluster 2: Majorly African bermudagrass (*C. transvaalensis*) accessions
- Cluster 3: *C. dactylon* accessions of African origin
- Cluster 4: Accessions from Oklahoma State University breeding program mainly
- Genetic diversity parameters including nucleotide diversity or average pairwise divergence (π), estimated mutation rate or expected nucleotide diversity (θ), Tajima's D statistic, and Fst statistic revealed substantial genetic variation in *Cynodon* genus (Tables 1, 2).

Future Studies

This diversity study will lay the foundation for association studies. Genotypic data generated from this study coupled with phenotypic data will be used to perform

Ishire et al.(2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS one, 6(5),

Lu et al. (2013). Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS genetics, 9(1), e1003215.

genome-wide association studies (GWAS) for important agronomic traits.

This study is supported by USDA HATCH fund (MIS-213140) and Mississippi Department of Agriculture and Commerce (Award # G00006342). We also thank Geoffrey Lalk, Jason

Ruffin, and Hannah Miller for maintaining greenhouse and field trials.