Poster Number 805
See more from this Division: A10 Bioenergy and Agroindustrial SystemsSee more from this Session: Bioenergy Conversion, Energetics, and Efficiency
Wednesday, November 3, 2010
Long Beach Convention Center, Exhibit Hall BC, Lower Level
Release of fermentable cell wall sugars in the cellulosic ethanol conversion process is assumed similar to rumen degradability; however, available literature has only reported surrogate rumen degradation measures (dry matter, neutral detergent fiber, and fermentation gases). We determined 72-h in vitro rumen degradability of cell wall polysaccharide component sugars (glucose, galactose, mannose, xylose, arabinose, and uronic acids) and release of these sugars by a dilute acid/high temperature pretreatment and cellulase conversion process for 153 corn stover samples. Composition of the stover ranged widely (139-193, 297-384, and 171-225 g/kg dry matter for lignin, glucose, and xylose, respectively). Glucose release averaged 11% less (P < 0.001) for the conversion process (518 g/kg) than rumen degradation (583 g/kg) in a paired t-test whereas release of most other sugars was greater (23 to 65%, P < 0.001) for the conversion process. Mannose was not released by the conversion process but rumen degradability was high (820 g/kg). Pearson correlations between conversion and rumen results were moderate (r = 0.70 and 0.55 for glucose and xylose, respectively; P < 0.001), and Spearman rank correlations were of similar magnitude. Lignin concentration was negatively correlated with conversion and rumen results, respectively, for glucose (r = -0.42 and -0.47, P < 0.001) and xylose (r = -0.23 and -0.24, P < 0.01). Rumen degradability of xylose, but not release by the conversion process, was negatively correlated with ferulate cross linking (r = -0.27, P < 0.001). The higher efficiency of the conversion process for hemicellulose and pectin was expected because the pretreatment acid-catalyzed their hydrolysis. Limited correlations between the conversion process and rumen degradability of corn stover suggest that in vitro rumen degradation is not a good model for feedstock performance in a cellulosic ethanol process, although probably better than using lignification as a predictor.
See more from this Division: A10 Bioenergy and Agroindustrial SystemsSee more from this Session: Bioenergy Conversion, Energetics, and Efficiency