99628 Metal-Free Catalysis of Persulfate Activation and Organic-Pollutant Degradation By Nitrogen-Doped Graphene and Aminated Graphene.

Poster Number 472-216

See more from this Division: SSSA Division: Soils and Environmental Quality
See more from this Session: Physical, Chemical, and Biological Processes Controlling Transport and Remediation of Emerging Contaminants in Soils Poster (includes student competition)

Wednesday, November 9, 2016
Phoenix Convention Center North, Exhibit Hall CDE

Kenneth C. Carroll, PO Box 30003, MSC 3Q, 201 Skeen Hall, New Mexico State University, Las Cruces, NM and Hao Chen, Plant & Environmental Sciences Department, New Mexico State University, Las Cruces, NM
Poster Presentation
  • Carroll-Chen-Poster-SSSA 2016-v2.pdf (579.3 kB)
  • Abstract:
    We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L-1) can rapidly activate PS (1 mM) to remove >99.9%  SMX within 3 hours, and NH2-GP (50 mg L-1) activated PS (1 mM) can also remove 50% SMX within 10 hours. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 hours to 1 hour when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L-1) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants.

    See more from this Division: SSSA Division: Soils and Environmental Quality
    See more from this Session: Physical, Chemical, and Biological Processes Controlling Transport and Remediation of Emerging Contaminants in Soils Poster (includes student competition)